Distribution, diversity, and abundance of bivalves (pelecypoda) in the mangrove swamp of Chame bay, Panama Oeste province, Panama

 

 Distribución, diversidad, y abundancia de bivalvos (pelecypoda) en los manglares de la bahía de Chame, provincia de Panamá Oeste, Panamá

Darío Córdoba González1  , Joan Antaneda2    Guadalupe Ureña3  

1Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Panamá,

dario.cordoba@up.ac.pa https://orcid.org/0000-0002-0693-4176

2Comisión Estados Unidos-Panamá para la erradicación y prevención del gusano barrenador, Panamá,

jo.ann2131@gmail.com https://orcid.org/0009-0003-8075-7352

 3 Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Panamá,

 urenaguadalupe1595@gmail.com  https://orcid.org/0009-0008-4424-4687[1]

 

 

INFORMACIÓN SOBRE EL ARTÍCULO 
Recibido: 12 de junio 2025 | Aceptado: 03 agosto 2025 | 
___________________
Como citar este documento:  Córdoba González, Darío; Antaneda, Joan and Ureña, Guadalupe. (2025). Distribution, Diversity, and Abundance of Bivalves (Pelecypoda) in the Mangrove Swamp of Chame Bay, Panama Oeste Province, Panama. Mesoamericana 27(2): 8-18.
___________________
Autor corresponsal: Darío Córdoba González, Universidad de Panamá, dario.cordoba@up.ac.pa 
___________________
Contribución de los autor: El autor de este trabajo declaran haber participado en la realización de este proyecto de investigación en todas sus etapas, búsqueda de información y redacción del artículo. 
___________________
Editor: Dr. Alonso Santos Murgas.


DOI: https://doi.org/10.48204/j.mesoamericana.v27n2.a8676


INFORMACIÓN SOBRE EL ARTÍCULO 
Recibido: 12 de junio 2025 | Aceptado: 03 agosto 2025 | Publicado: 30 octubre 2025.
___________________
Como citar este documento:  Córdoba González, Darío; Antaneda, Joan and Ureña, Guadalupe. (2025). Distribution, Diversity, and Abundance of Bivalves (Pelecypoda) in the Mangrove Swamp of Chame Bay, Panama Oeste Province, Panama. Mesoamericana 27(2): 8-18.
___________________
Autor corresponsal: Darío Córdoba González, Universidad de Panamá, dario.cordoba@up.ac.pa 
___________________
Contribución de los autor: El autor de este trabajo declaran haber participado en la realización de este proyecto de investigación en todas sus etapas, búsqueda de información y redacción del artículo. 
___________________
Editor: Dr. Alonso Santos Murgas.


           ABSTRACT: The mangrove ecosystem is vital both locally and globally, hosting a remarkable variety of flora and fauna, including animals, plants, mollusks, and birds. This makes it one of the five most productive ecological zones worldwide. Given Panama's extensive coastlines that provide ideal conditions for mangrove growth, it serves as an excellent site for studying the biodiversity of bivalve species associated with this habitat. Recognizing the significance of this ecosystem, a comprehensive study was conducted to gather information on the diversity and abundance of mollusks (Pelecypoda) at two sites within the mangrove of Chame Bay, located in the province of Panama Oeste. Two sampling sections were designated as Section A (Punta Chame) and Section B (El Líbano). At each site, individuals were collected using random sampling from three quadrants, with three adult mangrove trees selected for this purpose. Specimens were gathered from the sediment surrounding the mangrove, as well as from the roots and trunk, during low tide from July to December 2016. The collected specimens were preserved for identification in the laboratory at the Malacology Museum of the University of Panama (MUMAUP) and subsequently processed for inclusion in the National Reference Collection housed at this facility. The data revealed low species richness at both sites, with El Líbano demonstrating less diversity compared to Punta Chame, which had a higher abundance of organisms.

A total of six genera and seven bivalve species were identified across three mangrove species: Rhizophora mangle (red mangrove), Laguncularia racemosa (white mangrove), Pelliciera rhizophorae (pinuelo mangrove), and Avicennia germinans (black mangrove). Notably, the bivalve species most consumed by residents were Anadara tuberculosa and Mytella guyanensis, with A. tuberculosa being the most overexploited due to consumption. A diversity analysis for the Chame district indicated that the Pelecypoda class exhibited an H' index of 1.509 in Punta Chame, with a dominance value (D') of 0.2797 and equity (J') of 0.7754. In contrast, the Líbano sector showed an H' index of 0.9507, with equity and dominance values of J' = 0.685 and D' = 0.5078, respectively. The observed low population levels and limited diversity of these species in the mangroves of the Chame district can be largely attributed to anthropogenic activities such as mangrove deforestation for charcoal production, excessive extraction by external settlers for commercial purposes, pollution, and the establishment of shrimp farms.
KEYWORDS: Libano; Chame; mangrove; biodiversity; consumption; population.
RESUMEN: El ecosistema de manglares es vital tanto a nivel local como mundial, albergando una notable variedad de flora y fauna, incluyendo animales, plantas, moluscos y aves. Esto la convierte en una de las cinco zonas ecológicas más productivas del mundo. Dadas las extensas costas de Panamá que brindan condiciones ideales para el crecimiento de los manglares, sirve como un excelente sitio para estudiar la biodiversidad de especies de bivalvos asociadas con este hábitat.
Reconociendo la importancia de este ecosistema, se realizó un estudio integral para recopilar información sobre la diversidad y abundancia de moluscos (Pelecypoda) en dos
sitios dentro del manglar de Bahía Chame, ubicado en la provincia de Panamá Oeste. Dos secciones de muestreo fueron designadas como Sección A (Punta Chame) y Sección B (El Líbano). En cada sitio, los individuos se recolectaron mediante muestreo aleatorio de tres cuadrantes, con tres árboles de mangle adultos seleccionados para este propósito. Los especímenes se recolectaron del sedimento que rodea el manglar, así como de las raíces y el tronco, durante la marea baja de julio a diciembre de 2016. Los especímenes recolectados se conservaron para su identificación en el laboratorio del Museo de Malacología de la Universidad de Panamá (MUMAUP) y posteriormente se procesaron para su inclusión en la Colección Nacional de Referencia ubicada en esta instalación. Los datos revelaron una baja riqueza de especies en ambos sitios, con El Líbano demostrando menor diversidad en comparación con Punta Chame, que tuvo una mayor abundancia de organismos. Se identificaron un total de seis géneros y siete especies de bivalvos en tres especies de manglar: Rhizophora mangle (mangle rojo), Laguncularia racemosa (mangle blanco), Pelliciera rhizophorae (mangle de pinuelo) y Avicennia germinans (mangle negro). Cabe destacar que las especies de bivalvos más consumidas por los residentes fueron Anadara tuberculosa y Mytella guyanensis, siendo A. tuberculosa la más sobreexplotada debido al consumo. Un análisis de diversidad para el distrito de Chame indicó que la clase Pelecypoda exhibió un índice H' de 1.509 en Punta Chame, con un valor de dominancia (D') de 0.2797 y equidad (J') de 0.7754. En contraste, el sector Líbano mostró un índice H' de 0,9507, con valores de equidad y dominancia de J' = 0,685 y D' = 0,5078, respectivamente. Los bajos niveles poblacionales observados y la limitada diversidad de estas especies en los manglares del distrito de Chame pueden atribuirse en gran medida a actividades antropogénicas como la deforestación de manglares para la producción de carbón vegetal, la extracción excesiva por parte de colonos externos con fines comerciales, la contaminación y el establecimiento de granjas camaroneras. 
PALABRAS CLAVE: Líbano; Chame; mangle; biodiversidad; consumo; población.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


INTRODUCTION


The mangrove ecosystem is characterized by a complex array of tree and shrub species that have evolved to thrive in the intertidal zones of tropical and subtropical coastlines globally. These species have developed a tolerance to waterlogged soils and high salinity conditions (Pomareda & Zanella, 2006). This highly productive and intricate ecosystem contributes significant nutrients to coastal marine waters, benefiting seagrasses and various commercially important species (Gaxiola, 2011). Mangroves are typically found along coastlines, estuaries, coastal lagoons, wetlands, and river mouths. Their ecological significance lies in the roles that their organisms play in maintaining coastal balance and protection, providing spawning and feeding grounds for species ranging from fish to crustaceans, while also offering refuge to crabs, mollusks, and nesting areas for shorebirds. Economically, mangroves are valued for their role as habitats for fish species, bark tannins, and wood used in various artisanal and commercial applications (Olguín et al., 2007).

The richness of larger mollusks (malacofauna) associated with mangrove ecosystems significantly influences their biocenotic diversity. Abiotic factors such as salinity (Flores, 1973), temperature, seasonality, and soil composition regulate (Newell, 1958) patterns that determine species distribution, density, and adaptability in varying environments. Biotic factors like predation, competition, and food availability limit distribution (Connell et al., 1961; Haven, 1971), in addition to interactions with other factors such as exposure and distance from the shore (Franz, 1976). Invertebrate communities within mangrove ecosystems display variations in species density and abundance by zone, throughout the ecosystem, and across seasons (Jiménez, 1994), often leading to dominance by a few species that are highly adaptable to environmental changes. This differs from sandy beach communities where factors such as larval recruitment (specifically for mollusks, not juvenile fish), nutrient availability, and environmental conditions—including desiccation and thermal variation—can have markedly different impacts (Pfaff & Nel, 2019). However, abundance and diversity may also be influenced by habitat fragmentation or pollution (Cárdenas-Calle & Mair, 2014).

Mollusk populations associated with mangrove substrates generally comprise species that reside in the sediment as ectofauna and various Pelecypoda groups, buried up to 30 cm deep, representing the endofauna of the mangrove. All these organisms are marine-affiliated but must also endure temporary aerial conditions during low tides and the general variations associated with tidal changes (Flores, 1973).

Globally, numerous studies have been conducted on various aspects of mangrove faunal ecology, including research on the distribution, zonation, ratio, abundance, density, and diversity of Mollusca (Pelecypoda and Gastropoda) alongside population fluctuations over time/season, as well as their associations with substrate types and vegetation (Emmen & Tejada, 1984). Previous research focused on mollusks associated with mangroves has primarily emphasized the Pelecypoda group due to its economic significance and as a food source. Reports indicate 48 species of pelecypods from collections along African coasts, with additional studies in the west coast of the Americas identifying 11 species, and 10 species noted along the southeast coast of North America, plus 37 species in the Caribbean and northeast South America (Morton, 1983).

Organisms inhabiting submerged root regions exhibit impressive adaptation mechanisms, with a dominance of epizoic, epigenic, and delicate species; some hold significant commercial value, such as the oyster Crassostrea rhizophorae (Guilding, 1828) (Lalana & Perez, 1985). This extensive root system supports many animal groups throughout their life cycles, including fish, shrimp, crabs, and mollusks (Rützler & Feller, 1988). Consequently, the current study aims to estimate the occurrence, diversity, and abundance of the Bivalvia class within the Mollusca phylum, and to elucidate community structure based on the most significant species within the mangroves of the Chame district. This study will provide new insights into this taxon for a site with limited biological information, which may also highlight areas affected by wastewater pollution.

MATERIAL AND METHODS

Study Site: Although Panama boasts 2,800 km of coastline divided into 39% Caribbean and 61% Pacific regions, high diversity is observed due to habitat heterogeneity with a mix of biotopes (estuaries, rocky areas, mangroves, sandy beaches, and muddy zones), partially or fully situated on coastal lands originating from marine areas. Primarily, the Pacific coast hosts substantial numbers and volumes of benthic organisms (I.G.N.T.G., 2007).

Main Account: The Chame wetland comprises mangroves and muddy plains occupying the low area of the Chame River basin from its mouth to Monte Oscuro Abajo. The Chame mangroves are entirely flat, attached to a mountain chain like Cerro Campana or Punta Chame, located six kilometers from the Atlantic coast of Nicaragua (Fig. 1). The most representative data support the characterization of the floristic and environmental aspects of a dense mangrove forest extending approximately 59,576 km², covering close to 39,000 km² of muddy plains at the Chame River mouth, with an average temperature of 27.4°C and annual rainfall varying between 1,200 to 2,000 mm (Flores et al., 2010). Chame is a district in the province of Panama Oeste, Panama, covering an area of 352.93 km² (136.16 square miles). The district consists of 11 corregimientos, including El Líbano (Latitude: 8°39'35" N and Longitude: 79°49'45" W) and Punta Chame (Latitude: 8°39'45" N, Longitude: 79°52'51" W) (Panamanglar, 2013), which represent the quadrants where the research was conducted.

Punta Chame: This part of the Chame mangrove is situated within the internal area of the mangrove; the substrate comprises sandy mud. Rhizophora mangle is the dominant species, followed by Laguncularia racemosa and Pelliciera rhizophorae (Fig. 2a).

Líbano: This extensive mangrove area exhibits a high presence of red mangrove (Rhizophora mangle), alongside black mangrove (Avicennia germinans). Water access for this site is through channels, and the substrate consists of mud (Fig. 2a). Right along the inner edge of the mangrove, with a sandy-muddy substrate, R. mangle is the dominant species, with L. racemosa and P. rhizophorae also present (Fig. 2b).

Figura 1.

Map of the sampling site, El Libano and Punta Chame, Chame district, West Panama, Panama

 

Figura 2a.

A Punta Chame sector, site where the samplings were carried out; sand-mud substrate. 2b: B Lebanon sector, sampling site with muddy substrate.

 

Field Methodology: Two sections were established in the field: Section A (Punta Chame) and Section B (El Líbano); each consisting of three quadrants of 100 m², spaced 200 meters apart. Field outings were conducted during low tide over six months, twice a month. The dates and times for collection outings were determined using tide prediction tables for the Pacific of Panama. Three adult mangroves were randomly sampled within the quadrants, collecting specimens from the mud surrounding the mangrove, as well as from the roots and trunk. Plastic bags were labeled with the section, date, and substrate type (trunk, root, or mud) for collecting biological materials. Only one living representative was taken from each sample, with all individuals found within the quadrant counted (Fig. 3).

Figura 3.

Substrates where the samples were taken (A. root; B. trunk; C. mud).

Laboratory Procedure: The collected material was deposited in the Malacology Museum of the University of Panama (MUMAUP) for identification. Prior to identification, the soft bodies of the specimens were separated from the shells and then dried in an oven. Identification was based on the morphological characteristics of the shell, including the aperture, siphonal canal, and, for some gastropods, additional information such as folds or teeth on the inner lip; types of teeth and muscle scars in Pelecypoda. Taxonomic identification was assigned using "Seashells of Tropical West America" (Keen, 1971) for Gastropoda and Pelecypoda, and "Bivalve Seashells of Tropical West America" (Coan & Valentich-Scott, 2012) exclusively for Pelecypoda. Taxonomic updates were cross validated against the World Register of Marine Species (WoRMS, 2025).

Statistical Analysis: Data processed during the research were tabulated using Excel. The statistical analysis utilized in this study employed the Past 3.0 software along with mathematical calculations such as the Shannon-Wiener Diversity Index (H’), Dominance (D’), and Equitability (J’).

Commercial Mollusk Survey: To better understand the species utilized in our studied locations, a survey was conducted with 40 individuals regarding consumption and extraction of shellfish. Questions addressed frequency of consumption, most consumed species by residents, product origin, and perceptions of population declines.

 

RESULTS

A total of 303 individuals were recorded across six families and seven species in six genera; the genus with the highest number of species was Polymesoda Rafinesque 1820, represented by two species. The highest counts obtained through genotypic technology were Leukoma asperrima (G.B. Sowerby I, 1835) (135 organisms; 44.55%), while Isognomon recognitus (Mabille, 1895) was represented by a single specimen (0.33%) (Fig. 4 and Table 1). Among the substrates, roots (one individual) and mud (302 individuals) were the only habitats where specimens were found, totaling 303 individuals. In the roots, only I. recognitus (0.33% of total) was present in the root substrate (Table 2); L. asperrima was the most representative species within the mud, comprising 135 individuals (44.55%) (Table 2). The Pelecypoda class exhibited an H' index of 1.509, while data based on Dominance (D') revealed a higher value within the class Pelecypoda (Table 4).

Punta Chame (Sector A): Two families were accumulated in this site, located at the inner edge of a mangrove with sandy-muddy substrate (303 individuals from two orders, six families, six genera, and seven species). The genus with the highest number of species was Polymesoda represented by two species, with L. asperrima being the most common, totaling 135 individuals (44.55%). Conversely, I. recognitus had one specimen and constituted 0.33% of the total species (Table 1). The pelecypods were confined to the root substrate (one individual) and the mud (302 individuals), totaling 303 individuals. Within the root substrate, only one individual of I. recognitus was found (0.33% of total); L. asperrima was the most representative species in the mud with 135 individuals (44.55%) (Table 2). The Pelecypoda class exhibited a diversity index of H’=1.509, with a dominance value (D’) of 0.2797 and equity of J’=0.7754 (Table 4).

 


Table 1.

 Number of individuals and species of the Class Pelecypoda found in the study.

Species

Locality

Punta chame

(Sandy- muddy)

Líbano

(Muddy)

Mytella guyanensis (Lamarck,1819)

35

2

Anadara tuberculosa (Sowerbey,1833)

30

11

Isognomon recognitus (Mabille,1895)

1

0

Polymesoda inflata (Philippi, 1851)

13

0

Polymesoda notabilis (Deshaye,1855)

20

0

Leukoma asperrima (G. B. Sowerby I, 1835)

135

1

Panamicorbula ventricosa (A. Adams & Reeve, 1850)

69

2

Total Individuals

303

16

 

    Table 2.

    Identified mollusk species in Punta Chame by substrate type.

Species

RAÍZ

FANGO

Mytella guyanensis (Lamarck,1819)

0

35

Anadara tuberculosa (Sowerbey,1833)

0

30

Isognomon recognitus (Mabille,1895)

1

0

Polymesoda inflata (Philippi, 1851)

0

13

Polymesoda notabilis (Deshaye,1855)

0

20

Leukoma asperrima (G. B. Sowerby I, 1835)

0

135

Panamicorbula ventricosa (A. Adams & Reeve, 1850)

0

69

Total Individuals

1

302

 

 

Table 3.

Species of molluscs identified in Lebanon according to the type of substrate.

Species

FANGO

Mytella guyanensis (Lamarck,1819)

2

Anadara tuberculosa (Sowerbey,1833)

11

Leukoma asperrima (G. B. Sowerby I, 1835)

1

Panamicorbula ventricosa (A. Adams & Reeve, 1850)

2

Total Individuals

16

 

 

Table 4.

Diversity index of the class Pelecypoda for the different sampling sites.

Sitios

Riqueza (S)

Individuos

Shannon- Wiener (H’) (bels)

Dominance (D’) (bels)

Equidad (J’) (bels)

Punta Chame

7

303

1.509

0.2797

0.7754

El Líbano

4

16

0.9507

0.5078

0.6858

 


Líbano (Sector B): The fact that this mangrove ecosystem is located at the outer edge refers in this case to the association of bivalves with the mangrove or the muddy substrate. A clear vertical capture of samples from trunk, root, and mud showed that only 16 marines Bivalvia (Pelecypoda) were present within four species belonging to four genera and families. The dominant genus was Anadara Gray, 1847, with Anadara tuberculosa G.B. Sowerby I, 1833 being the most representative species (Fig. 5), comprising 11 specimens and constituting 0.23% (Table 1 and 3). The corresponding diversity index for the Pelecypoda class was H’=0.9507, with equity J’=0.685 and dominance D’=0.5078 (Table 4).

Figura 4.

Chame Bay Pelecypods: A. Mytella guyanensis. B. Anadara tuberculosa, C. Polymesoda notabilis, D. Leukoma aspérrima, E. Polymesoda inflata, F. Panamicorbula ventricosa.

 

 

 

 

 

 

 

Figura 5.

Anadara tuberculosa (Sowerby, 1833) la especie más consumida y la más sobreexplotada de la Bahía de Chame, Chame, Provincia de Panamá Oeste.

 

Imagen en blanco y negro

El contenido generado por IA puede ser incorrecto.

DISCUSSION

Seven species of Pelecypoda, six genera, and six families were observed, totaling 319 individuals. Previous studies in the Pacific of Panama, particularly in Veraguas, have documented collections conducted by Hertlein in Bahía Honda (Strong & Hertlein, 1939) using drags and manual collection by local divers studying coral reefs. In Aguadulce, Tejera and Avilés (1975-1976) identified 35 species of pelecypods; Diéguez and Avilés (1981) recorded 83 species of commercially important pelecypods in the mangrove area of Bahía de Chame; Gonzáles (1983) reported 35 pelecypods in the Pacific coast (in the districts of Zona and Las Palmas); Morao (1983) noted 22 species in the northeastern coast of Venezuela between January and March of 1983; Avilés (1984) documented 45 pelecypods; Emmen & Tejada (1950) studied the distribution, abundance, and diversity of Pelecypoda in a mangrove in Aguadulce, finding 12 species of pelecypods; Lalana & Perez (1985) collected 14 species in the mangroves of Laguna and 23 species for the mangroves of the Caribbean cays of Cuba; Flores & Morales (2001) reported 89 species of bivalves from the sands of Santa Catalina and in their study on the diversity and abundance of pelecypods, Fairchild & López (2010) identified a total of 52 species of Bivalvia.

 

Comparisons between studies in Brazil and other regions indicated that this class is less diverse and abundant in mangroves, a situation like our findings, supported by Frith et al. (1976), who discovered that Pelecypoda distribution was rare in mangroves with salinity fluctuations due to tides, while occurrence within mangroves was higher under relatively stable saline conditions. While the number of pelecypods recorded in our study is low, this outcome may be explained by the proximity of the sampling sites to estuaries with significant salinity variations. Most organisms exhibit general behaviors that restrict their activities to favorable habitats (Meadows & Campbell in Spight, 1977), making habitat selection a crucial factor influencing distribution patterns. The quality and quantity of species are contingent upon tidal range, wave intensity, and substrate type (Vegas, 1971); species that avoid wave impacts and desiccation stress by burying themselves in sand or mud are found in sandy and muddy substrates. Conversely, although sand is more frequently disturbed, species deposited in these areas are less exposed and less likely to be moved (Rodríguez, 1967); consequently, we observed a higher number of individuals in the mud.

Species diversities (H') in our two study areas were as follows: Punta Chame H’= 1.835 and El Líbano H’= 1.596. Both indices are notably low, confirming that Punta Chame is more diverse than El Líbano, as indirectly demonstrated by the higher number of individuals seen in the physical data. This is evident in the dominance values, with D’= 0.2035 for Punta Chame, while El Líbano had a slightly higher value D’= 0.2543, indicating communities where species are numerically superior to others. Punta Chame (J' = 0.6777) is comparable to some countries regarding equity value, while El Líbano (J' = 0.6422) appears low for that group. Both sites exhibited low diversity; however, Punta Chame (H’=1.835) showed slightly greater diversity than El Líbano (H’=1.596). Punta Chame is situated at the inner edge of the mangrove, closer to the beach, whereas El Líbano lies at the outer edge of these forests, nearer to continental or human-populated areas.

The results of the dominance and equity indices suggest a homogeneous distribution; both sites display an equitable distribution of species, although the physical data imply marked dominance, aligning with Margalef (1995), who indicated that in a community where one species numerically dominates another, community diversity is low. The low diversity values are associated with significant sedimentation in El Líbano and pollution generated by human activities; hence, our records are considerably lower than those documented by other authors throughout the Panamanian Pacific, such as in studies conducted in Bahía de Chame (Diéguez & Avilés, 1981) and in Líbano (Fairchild & López, 2010). Specifically, Ortega et al. (1986) noted that communities differ in species diversity in relation to substrate type, dehydration risks, predation, and food availability. Mollusk diversity, as stated by Jackson (1972), is influenced by environmental factors such as turbidity, temperature, water pH, salinity, and grain size.

The mollusk species collected by us and consumed by the local population include A. tuberculosa, known as black shell, a significant source of protein and economic resource among coastal inhabitants, typically consumed in ceviche, rice dishes, among other recipes (Tejera et al., 2016). We found it to be the most exploited species in the area and along the Pacific coast; M. guyanensis is frequently harvested, adhering to roots and forming part of the human diet. Its soft flesh is nutritionally valuable as a protein source, ranking second internationally in species consumed after sardines (Tejera et al., 2016); L. asperrima, the white clam, is edible and used in cocktails, ceviches, and rice dishes (Tejera et al., 2016); P. ventricosa is consumed in Bahía de Chame, although many residents are unaware, as they are sold in mixed "clam" bags (Tejera et al., 2016); species such as P. inflata and P. notabilis are also consumed in small quantities. The genus Polymesoda, native to the Americas, is the most exploited fishery resource in countries like Colombia and Venezuela, and it is classified as "vulnerable" on the list of threatened species in the Colombian Caribbean (INVEMAR, 2002). The deforestation of mangroves for charcoal production, excessive shrimp extraction by external individuals for sale, pollution, and its impact from shrimp farm development are likely responsible in varying proportions (Macintosh, 1988 and Macintosh & Ashton, 2002).; also, in this document); all of this has led to reductions in available stocks for artisanal fishers in this area. The mollusk species most consumed by residents, in order, are: A. tuberculosa, M. guyanensis, L. asperrima, P. ventricosa, P. inflata, and P. notabilis; in this regard, the data gathered from the survey and other studies suggest that no other species harvested by the inhabitants of Punta Chame Bay (and likely along the Pacific coast of Panama) has been subjected to greater fishing pressure than A. tuberculosa (Nagabhushanam & Dhamne, 1977).

 

CONCLUSION

The observed low population levels and limited diversity of these species in the mangroves of the Chame district can be largely attributed to anthropogenic activities such as mangrove deforestation for charcoal production, excessive extraction by external settlers for commercial purposes, pollution, and the establishment of shrimp farms.

 

ACKNOWLEDGMENTS

We would like to thank with all our hearts our advisors: Janzel Villalaz, Victor Tejera and Daniel Emmen who thanks to their knowledge have achieved an excellent work of our thesis, to the staff of the Malacology Museum of the University of Panama (MUMAUP), for providing us with a space to carry out the laboratory work, and without leaving behind our colleagues Jean Carlos Abrego, Freddy Nay, Eddier Rivera, Helio Quintero, Enós Juárez, Isela Guerrero, Alejandro Ávila, Emeli Barrios, Jessenia Espinosa, who contributed their time to accompany us on our field trips, also to Mr. Casimiro Calles for lending us his machete on the sampling days and to Mr. Carlos Abrego for giving us lodging and food every day that we needed to go to the field.

REFERENCES

Avilés, M.C. (1984). Moluscos provenientes de la Isla Pedro Gonzáles, Archipiélago de las Perlas, Panamá. Donax panamensis, 37,21.

Cárdenas-Calle, M. & Mair, J. (2014). Caracterización de macroinvertebrados bentónicos de dos ramales estuarinos afectados por la actividad industrial, estero Salado – Ecuador. Revista Intrópica, 9, 118-128. https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/1439/819

Coan, E.V. & Valentich-Scott, P. (2012). Bivalve seashells of tropical west America. Santa Barbara Museum of Natural History Monographs. Santa Barbara, United State.

Connell, J. (1961). Effects of completion, predatory by Thais lapillus and other facture on natural populations of the barnacles Balanus balaniudes. Ecological Monographs, 31, 61-103.

Diéguez, M. & Avilés, M.C. (1981). Contribución al conocimiento de los bivalvos de interés económicos del pacifico de Panamá. Panamá: II congreso Nacional de Acuicultura Memorias MIDA, Panamá.

Emmen, D. & Tejada, R. (1984). Estudio De la Distribución, Abundancia y diversidad de Pelecípodos y Gasterópodos de un Manglar del distrito de Aguadulce. Tesis. Panamá, Panamá.

Fairchild, N.M & López S.I. (2010). Diversidad y Abundancia de Moluscos de Manglar (Bivalvos y Gasterópodos) en el Líbano y áreas adyacentes en la Bahía de chame, Provincia de Panamá. Tesis. Panamá, Panamá.

Flores, C. (1973). La familia Littorinidae (mollusca: Mesogastropoda) en las aguas costeras de venezuela. Boletín del Instituto Oceanográfico de la Universidad de Oriente, ubicado en Cumaná, 12, 3-22.

Flores, O. & Morales, L. (2001). Moluscos de la clase Pelecypoda y Gastropoda de la ensenada e isla Santa Catalina, pacifico veragüenses. Tesis. Panamá, Panamá.

Franz, D. (1976). Benthic assemblages in relation to sediment gradients in the northeast Long Island sound. Malacología, 15(2), 372-399.

Frith, D.W., Tantanasiriwong, R. & Bhatia, O. (1976), zonation and abundance of macrofauna on mangrove shore, Phuket Island. Research Bulletin Phuket Marine Biological Center, 10, 1-31.

Gaxiola, M. (2011). Una revisión sobre los manglares: características, problemáticas y su marco jurídico. Importancia de los manglares, el daño de los efectos antropogénicos y su marco jurídico: caso sistema lagunar de Topolobampo. Ra Ximhai: revista científica de sociedad, cultura y desarrollo sostenible, 7(3), 355-369.

Gonzalez, G.R. (1983). Informe de las especies de molusco colectadas durante la gira de barro colorado salud. No. 7 a la costa Pacífica de Veraguas. Donax panamensis, 29, 66-72.

Haven, S. 1971. Niche differences in the intertidal Limpets Acmea scabra and Acmea digitales in Central California. Veliger, 13, 231-248.

Instituto Geográfico Nacional Tommy Guardia (IGNTG). (2007). Atlas Nacional de la República de Panamá. 4ta edición. Quebecor World Bogotá. Editora Novo Art S.A. Colombia.

INVEMAR. (2002). Informe del estado de los ambientes marinos y costeros de Colombia: Año 2002. Serie de Publicaciones Especiales INVEMAR, No. 8, Santa Marta, Colombia.

Jackson, J. (1972). the ecology of the mollusks of Thalassia communities, Jamaica. West Indies. II. Mollusks population variability along an enviromental stress gradiente. Marine biology, 14, 304-337.

Jiménez, J.A. (1994). Los manglares del Pacífico centroamericano. UNA, Costa Rica.

Keen, A.M. (1971). Seashells of Tropical West America. Marine Mollusk from Baja California to Perú. Stanford University Press. Stanford, California, United State.

Lalana, R. & Pérez, M. (1985). Estudio cualitativo y cuantitativo de la fauna asociada a las raíces de Rhizophora mangle en la cayería este de la Isla de la Juventud. Revista de Investigaciones Marinas, VI (2-3), 45-57.

Macintosh, D.J. (1988). The ecology and physiology of decapods of mangrove swamps. Symposia of the Zoological Society of London, 59, 315-341.

Macintosh, D.J. & Ashton, E.C. (2002). A Review of Mangrove Biodiversity Conservation and Management. Centre for Tropical Ecosystems Research, Aarhus, Denmark. http://mit.biology.au.dk/cenTER/index.html

Margalef, R. (1995). Aplicacions del caos determinsita en ecologia (pp 171-184) En: Flos, J. (ed.) 1995. Ordre i caos en ecologia. Publicacions Universitat de Barcelona, España.

Morao, A. (1983). Diversidad y fauna de moluscos y crustáceos asociados a las raíces sumergidas del mangle rojo, Rhizophora mangle en la Laguna de la Restinga. Tesis. Universidad de Oriente, Venezuela.

Morton, B. (1983). Mangrove bivalves. In The Mollusca: Ecology. Russell-Hunter.

Nagabhushanam, R. & Dhamne, K.P. (1977). Seasonal gonadal changes in the clam Paphia laterisulca. Aquaculture, 10, 141-152.

Newell, G.E. (1958). The behavior of Littorina littorea (L). under natural conditions and its relations to position on the shore. Journal of the Marine Biological Association UK, 37, 229- 239.

Olguín, E., Hernández, M. & Sánchez, G. (2007). Contaminación de manglares por hidrocarburos y estrategias de biorremediación, fitorremediación y restauración. Revista internacional de contaminación ambiental, 23(3), 139-154. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992007000300004&lng=es&tlng=es.

Ortega, S. (1986). Fish predation on the gastropods in the Pacific coasts of Costa Rica. Journal of Experimental Marine Biology and Ecology, 97, 181-191.

PANAMANGLAR. (2013). http://panamanglar.org/es/listing/bahia-de-chame/

Pfaff, M.C. & Nel, R. (2019). Intertidal zonation. Reference module in earth system and environmental sciences. Second Edition, United States. https://doi.org/10.1016/B978-0-12-409548-9.11184-4

Pomareda, E., & Zanella, I. (2006). Diversidad de moluscos asociados a manglares en isla San Lucas. Revista de Ciencias Ambientales, 32(1), 11-13.

Rodríguez, G. (1967). Comunidades bentónicas. En: Ecología marina. Eds: fundación La Salle de Ciencias Naturales. Argentina.

Rützler, K. & Feller, C. (1988). Mangrove swamp communities. Oceanus, 30, 16-24.

Spigth, T.M. (1977). Diversity of shallow water Gastropod Communities on temperature and tropical beaches. The American Naturalis, 3(982), 1077-1097.

Strong, A.M. & Hertlein, L.G. (1939). Marine mollusk from Panamá collects by Allan Hancock Expedition to the Galapagos Islands, 1931- 1932 En: Allan Hancock pacific vol. 2 (12), p.177-184. California: The University of southern California press, United States.

Tejera, V.H. & Avilés, M.C. (1975). Lista de gasterópodos de la costa del Distrito de Aguadulce, Provincia de Coclé, República de Panamá. Conciencia, 2(2), 5-6 y 15.

Tejera, V.H. & Avilés, M.C. (1976). Inventario de flora y fauna de costas del distrito de Aguadulce. Primera parte: Clase Pelecypoda. Conciencia, 3(3), 10-11.

Tejera, V.H., Avilés, M.C. & Córdoba D. (2016). Moluscos Intermareales del Distrito de Aguadulce. Guía de campo. Imprenta: Color Group Internacional. Panamá, Panamá.

Vegas, M. (1971). Introducción a la ecología de los bentos marinos. O.E.A Washintong D.C.; United States.

WORLD REGISTER OF MARINE SPECIES (WoRMS). Editorial Board (2025). World Register of Marine Species. Available from http://www.marinespecies.org


 

 



[1] 1Miembro del Sistema Nacional de Investigación SIN-SENACYT, Panamá, 3Investigadora Asociada en el Museo de Malacología, Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología.

Imagen que contiene dibujo, bola de billar, señal

Descripción generada automáticamente