

Estudio de vulnerabilidad ante el ascenso del nivel del mar en la comunidad de Kosovo

Studying Vulnerability to Sea Level Rise in the Kosovo Community

Miguel A. Méndez C.

Universidad de Panamá, Centro Regional Universitario de Panamá Oeste, Panamá miguel.mendez@up.ac.pa https://orcid.org/0009-0004-5530-6805

Jaqueline Sánchez

Universidad de Panamá, Centro Regional Universitario de Panamá Oeste, Panamá jaquelinelsanchez4@gmail.com https://orcid.org/0009-0006-6429-8311

*Autor de correspondencia: (miguel.mendez@up.ac.pa)

Fecha de recepción: 19/08/2025 Fecha de aceptación: 24/10/2025

DOI https://doi.org/10.48204/synergia.v4n2.8570

Resumen

Este estudio evalúa la vulnerabilidad de la comunidad de Kosovo, en el corregimiento de Puerto Caimito, Panamá Oeste, frente al aumento del nivel del mar por cambio climático. Se recolectaron datos sobre eventos extremos y balances hídricos edafoclimáticos proyectados para 2025, 2030 y 2050, complementados con entrevistas exploratorias a residentes para conocer sus percepciones sobre los riesgos costeros. Además, se realizaron recorridos de campo en comunidades afectadas, incluyendo Kosovo, San José, Punta Salazar y Plava Grande. Los análisis de exposición, vulnerabilidad y riesgo muestran que la comunidad presenta alta exposición a inundaciones costeras debido a su ubicación físico-espacial y limitada capacidad de adaptación. Los resultados resaltan la necesidad de estrategias de gestión de riesgo específicas para las características locales y aportan información clave para la planificación de medidas de mitigación y adaptación ante el ascenso del nivel del mar en comunidades costeras de Panamá.

Palabras clave: cambio climático, vulnerabilidad, erosión costera, inundación, precipitación

Abstract

This study evaluates the vulnerability of the Kosovo community, located in the corregimiento of Puerto Caimito, Panamá Oeste, to sea level rise due to climate change. Data on extreme events and soil-climate water balances projected for 2025, 2030, and 2050 were collected, complemented by exploratory interviews with residents to understand their perceptions of coastal risks. Additionally, field visits were conducted in affected communities, including Kosovo, San José, Punta Salazar, and Playa Grande. Analyses of exposure, vulnerability, and risk show that the community is highly exposed due to its physical-spatial location and limited adaptive capacity. The results highlight the need for risk management strategies tailored to local conditions and provide key information for planning mitigation and adaptation measures against sea level rise in coastal communities in Panama.

Keywords: climate change, vulnerability, coastal erosion, flooding, precipitation

Introducción

La comunidad de Kosovo, Puerto Caimito, Panamá Oeste al encontrarse en una zona costera es vulnerable a eventos extremos como oleajes, inundaciones o erosión costera asociados principalmente al cambio La pérdida de tierra firme, de viviendas y afectaciones a la salud y la calidad de vida de la población agravan aún más la situación de esta comunidad. Solo "en Centroamérica, el cambio climático representa una amenaza significativa tanto para la población como para los sectores productivos. A pesar de que esta región contribuye con menos del 0.5 % de las emisiones globales de GEI (gases de efecto invernadero) es una de las más vulnerables a los efectos climáticos" (CEPAL, 2010, p. 19).

El área que abarca la comunidad de Kosovo es de 11.1 hectáreas y presenta un perímetro de 2.698 metros a lo largo de la costa del pacifico panameño.

La evaluación de la vulnerabilidad al cambio climático en zonas costeras puede realizarse mediante enfoques mixtos. En particular, los enfoques participativos permiten reflejar las percepciones de los habitantes respecto a su exposición y riesgo. Además, "el consenso entre los investigadores actuales muestra que la vulnerabilidad costera depende de la geografía y requiere investigaciones basadas en el lugar" (Bevacqua et al., 2018, párr.1). Esto indica que la ubicación físico-espacial es clave para entender la vulnerabilidad, y que

es necesario obtener datos específicos mediante la recolección de información local para proponer soluciones adecuadas.

Otro de los impactos directos del cambio climático se ha evidenciado en la pesca, cosecha de almejas y cangrejos que prácticamente han desaparecido porque "dentro de los efectos como el aumento del nivel del mar se encuentra la afectación en los sectores económicos como la acuicultura y piscicultura" (Ciniglio et al., 2021, p. 41). Además, de que "representa una amenaza considerable para ecosistemas costeros vitales como manglares, arrecifes de coral y marismas saladas" (Masterson, Hall & North, 2025, párr. 27).

La erosión costera es evidente, se puede observar cómo debido a dicho fenómeno provocado por los oleajes áreas de tierra firme se han perdido, con ella la vegetación como palmeras de coco, manglares y árboles frutales. Según los residentes, en menos de 30 años, en una extensión de 0.066 Km, de costa, se han perdido 6.6 ha. de tierra firme. El clima que en la actualidad domina en el área objeto de estudio del proyecto, es decir, el clima que se encuentra en la comunidad de Kosovo. Además, utilizando la herramienta de prospectiva del cambio climático en Panamá que muestran los escenarios desarrollados para anticipar los cambios e impactos en diferentes sectores y de esta manera ayudar a tener respuestas objetivas para enfrentarlos se estará presentando tablas y gráficos que muestren el escenario de cambio climático en la zona para los años 2030, 2050. Además, es fundamental reconocer que "a medida que las inundaciones costeras se vuelven más frecuentes y severas, se intensifica la erosión de las costas y se produce la intrusión de agua salada en fuentes de agua dulce" (Masterson et al., 2025, párr. 26).

Otro de los efectos físicos visibles es el periodo de recurrencia de oleajes, la entrada y permanencia de agua salada en zonas donde se alternaba con agua dulce lo que permitía el desarrollo de mangle; sumado a esto la presencia de asentamientos humanos y la tala de los mangles que sirven de barreras ante los oleajes, ha hecho que la situación de exposición, vulnerabilidad y riesgo sea mayor. No se puede dejar de lado que el área no solo se ve afectada por el Cambio Climático, sino también por la extracción de arena submarina a lo largo de la zona costera de la provincia de Panamá Oeste. El único camino de acceso al área se ve afectado por los oleajes dejando la comunidad aislada, cuando este

fenómeno ocurre trae consigo el arrastre de desechos sólidos (basura como plásticos que quedan en la comunidad y dentro de los manglares).

Figura 1.

Playa Grande, Kosovo, en el año 2003

Nota. Imágenes históricas satelitales de la herramienta de Google earth.

Figura 2. Playa Grande, Kosovo, en el año 2025

Nota. Imágenes históricas satelitales de la herramienta de Google earth.

En cuanto a aspectos sociales o de gestión de riesgo, el Sistema Nacional de Protección Civil (SINAPROC, 2016) señala que los planes de respuesta en zonas costeras deben ser enfocados en mitigar los riesgos asociados a inundaciones, marejadas, instrucción salina y erosión costera, eventos extremos que se atestiguan en el área de estudio. Dentro de dicha guía se destacan tanto medidas estructurales como no estructurales. Las primeras comprenden la reubicación de viviendas en zonas de deslizamiento, inundación,

marejadas o el reforzamiento de la infraestructura vial como caminos, puentes y edificaciones, entre otras, para dotarlos de niveles adecuados de protección; las segundas, elaboración de planes de evacuación y rutas seguras, protocolos de manejo de albergues y sitios de rescate, Además, la protección ambiental y la coordinación interinstitucional.

Se tiene registro de la implementación de algunas de estas medidas en el área de Kosovo. De acuerdo con Montenegro E. (2024) en octubre de 2020 el SINAPROC en conjunto con otras entidades, como la Gobernación de Panamá Oeste, el Ministerio de Salud, el Ministerio de Desarrollo Social, la Junta Comunal y el Servicio Aeronaval, es decir, a través de una coordinación interinstitucional, se llevó a cabo un plan de evacuación frente a un aviso de mareas máximas de 5 a 7 m de altura. Unas 90 familias fueron trasladadas a albergues temporales evidenciando el nivel de vulnerabilidad de la comunidad y la capacidad de respuesta institucional.

Materiales y métodos

A continuación, se realizará un análisis estadístico edafoclimático como herramienta para estimar el clima y su influencia en los fenómenos del cambio climático y el aumento del nivel del mar en el área estudiada.

Tabla 1.

Balance hídrico edafoclimático mensual del área objeto de estudio

https://revistas.up.ac.pa/index.php/synergia

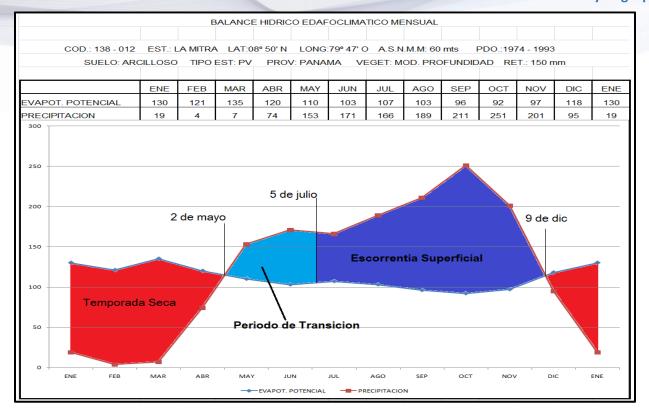
Synergía pp.562-580

			BALANG	E HIDR	COEDA	FOCLIM	ATICO M	IENSUAL					
COD.: 138 - 012	EST.:	LA MITE	A LAT	:08° 50' N	LONG	3:79° 47'	O A.S.	N.M.M: 6	0 mts	PDO.:19	974 - 199	3	
SUELO: AR	CILLOS	O TIPO	EST: P	/ PRO	V: PANA	AMA V	EGET: N	IOD. PR	OFUNDI	DAD R	ET.: 150	mm	
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	Tot - Pr
EVAPOT. POTENCIAL	130	121	135	120	110	103	107	103	96	92	97	118	1332
PRECIPITACION	19	4	7	74	153	171	166	189	211	251	201	95	1541
PRECIP ETP	-111	-117	-128	-46	43	68	59	86	115	159	104	-23	
SUMA (VAL. NEGAT.)	-134	-251	-379	-425								-23	
ALMACENAJE	60	27	11	8	51	119	150	150	150	150	150	128	
DIFERENCIA DE ALMAC.	-68	-33	-16	-3	43	68	31	О	0	0	0	-22	
EVAPOT. REAL	87	37	23	77	110	103	107	103	96	92	97	117	1049
EXCESO DE AGUA	О	О	О	О	О	О	28	86	115	159	104	О	492
DEFICIT. DE AGUA	43	84	112	43	О	О	О	О	О	О	О	1	283
TEMPERATURA MEDIA	26.0	26.6	27.2	27.3	26.9	26.5	26.6	26.5	26.3	26.2	26.2	26.3	26.6
RADIACION GLOBAL	446	454	452	417	376	366	369	357	345	324	350	406	389

Nota. Balance hídrico edafoclimático del área objeto de estudio realizado por el método de Radiación el cual permite caracterizar el clima del área. Elaborada de acuerdo con los datos de la tabla de balance hídrico edafoclimático de la estación La Mitra.

En la tabla 2, se observa el balance hídrico edafoclimático mensual más representativo del área objeto de estudio, es decir, de la comunidad de Kosovo. Se presentan los datos de precipitación, evapotranspiración potencial (ETP), evapotranspiración real (ETR), exceso y déficit de agua, según periodo de registro de la estación más representativa. Este balance edafoclimático caracteriza el clima del área estableciendo las fechas de la temporada seca, periodo de transición e inicio de la temporada lluviosa con escorrentía superficial.

Figura 3. Balance hídrico edafoclimático mensual del área objeto de estudio.



Nota. La figura representa la duración de las temporadas del clima del área objeto de estudio. Elaborada de acuerdo con los datos de la tabla de balance hídrico edafoclimático de la estación La Mitra.

En la figura 3, se presenta el comportamiento climático del área de estudio según los datos meteorológicos obtenidos de la estación de La Mitra. De forma general, se observa una temporada seca que abarca cinco meses, dando inicio en la primera década de diciembre (10 de diciembre) y finalizando el 2 de mayo. Por otro lado, la temporada lluviosa tiene una duración de seis meses, comenzando el 3 de mayo y extendiéndose hasta el 9 de diciembre.

A partir del momento en que se inicia la lluvia (3 de mayo), empieza a gestarse el periodo de transición o reposición de agua en el suelo, que tiene una duración de 64 días. Periodo durante el cual el suelo se satura y seguidamente empieza a registrarse escorrentía superficial o exceso de agua en el terreno.

Análisis de la temporada seca

La temporada seca se extiende del 10 de diciembre hasta la primera década de mayo (2 de mayo), con una duración de 5 meses. Durante este periodo la presencia de lluvias es mínima, lo cual se ve reflejado en la escasez de agua que se registra en los meses de dicha temporada; particularmente marzo, siendo el mes más crítico, con un déficit hídrico de 112 mm. En diciembre el déficit de agua en el suelo se inicia con 1.0 mm.

Análisis de precipitación y temporada lluviosa

La precipitación total actual registrada para el área de estudio es de 1541 mm. Los meses con menor precipitación son febrero con apenas 4 mm y marzo, con 7 mm.

El periodo de escorrentía superficial da inicio en la primera década de julio (6 de julio) cuando el suelo alcanza su capacidad máxima de retención de 150 mm, y finaliza el 9 de diciembre.

Comportamiento climático en base a escenario de cambio climático 2030 y 2050

Se estima que para los siguientes años el cambio climático irá en aumento y es por ello por lo que instituciones como el Ministerio de Ambiente han desarrollado diferentes prospectivas para Panamá y así lograr anticipar los posibles escenarios a los que se deberán enfrentar. Se hará una comparación para detallar los cambios observados en cada escenario presentado, basados en los datos del balance hídrico edafoclimático para el área objeto de estudio.

Escenario de cambio climático 2030 para el área objeto de estudio

Para el escenario de cambio climático 2030, se espera un incremento en la temperatura de 0.5°C y disminución en la precipitación en un 10%. Basándose en los datos

meteorológicos de la estación La Mitra, proyecta que los patrones climáticos se modificarán.

Tabla 2.Balance hídrico edafoclimático mensual del área objeto de estudio para el escenario 2030.

BALANCE HIDRICO EDAFOCLIMATICO MENSUAL													
ESCENARIO 2030 - CON INCREMENTO TEMPERATURA DE 0.5 $^{\circ}$ C Y DISMINUCION DE LA PRECIPITACION EN UN 10 $^{\circ}$.													
COD.: 138 - 012 EST.: LA MITRA LAT:08° 50' N LONG:79° 47' O A.S.N.M.M: 60 mts PDO.:1974 - 1993													
SUELO: ARCILLOSO TIPO EST: PV PROV: PANAMA VEGET: MOD. PROFUNDIDAD RET.: 150 mm													
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Tot - Pr
EVAPOT. POTENCIAL	133	123	137	122	112	105	109	105	98	94	99	120	1357
PRECIPITACION	17	4	1	67	138	153	149	170	190	226	180	85	1380
PRECIP ETP	-116	-119	-136	-55	26	48	40	65	92	132	81	-35	
SUMA (VAL. NEGAT.)	-151	-270	-406	-461								-35	
ALMACENAJE	103	24	10	3	29	77	117	150	150	150	150	118	
DIFERENCIA DE ALMAC.	-15	-79	-14	-7	26	48	40	33	0	0	0	-32	
EVAPOT. REAL	32	83	15	74	112	105	109	105	98	94	99	117	1043
EXCESO DE AGUA	0	0	0	0	0	0	0	32	92	132	81	0	337
DEFICIT. DE AGUA	101	40	122	48	0	0	0	0	0	0	0	3	314
TEMPERATURA MEDIA	26.5	27.1	27.7	27.8	27.4	27.0	27.1	27.0	26.8	26.7	26.7	26.8	27.1
RADIACION GLOBAL	436	447	445	410	369	359	362	350	338	317	343	399	381

Nota. Basado en los datos obtenidos de la estación de La Mitra- MiAmbiente

En la tabla 3, tomando como referencia el Balance Edafoclimático Mensual para el escenario 2030, podemos concluir que se espera que el total de precipitación anual disminuya en 161 milímetros, con respecto al total actual de precipitación. Y en el caso de la temperatura promedio se espera un incremento de 26.6 °C (promedio actual) a 27.1°C (promedio anual 2030). Estos cambios en los patrones climáticos traerán consigo afectaciones en todas las actividades.

Se espera que la crisis por el agua se haga más evidente sobre todo para el desarrollo de actividades agrícolas y ganaderas. El estado de las fuentes hídricas superficiales será más crítico debido a la disminución drástica de su caudal; que en algunos casos de lugar a que se sequen totalmente durante la estación seca.

La prolongación del periodo de transición de la estación seca a la lluviosa incrementara la exposición, vulnerabilidad y riesgo en la salud de la población. Cabe señalar que es durante este periodo donde se incrementan las enfermedades producidas por virus y bacterias, cuanto más se prolongue este periodo más nos exponemos a bacterias y virus. Este periodo de transición para 2030, tendrá una duración de 93 días.

En las zonas costeras y en particular en la comunidad de Kosovo, el incremento de la temperatura y disminución de las lluvias incrementaran los fenómenos como oleajes y deterioro de la costa por erosión y la destrucción de los manglares.

El aumento de la temperatura en zonas costeras, provocado por el cambio climático, tiene múltiples impactos negativos. Estos incluyen el aumento del nivel del mar, la alteración de ecosistemas marinos, incremento en la frecuencia e intensidad de fenómenos meteorológicos extremos y problemas de salud pública. Además, la acidificación de los océanos afecta la vida marina y la pesca, impactando la seguridad alimentaria de las comunidades costeras.

Según estudios realizados "utilizando datos disponibles sobre, los datos de aumento del nivel del mar publicados por MIAMBIENTE en 2023 tomando como parámetros los últimos 20 años se estima que aproximadamente el 3% de la superficie de la República de Panamá, para el 2050 se verá afectada" (Gordón C., 2024, párr. 9); esto quiere decir que el incremento se da a un ritmo de 1.08 cm por año. Para el escenario 2030, el incremento total será de 32.4 cm. A partir de este escenario los impactos en la comunidad de Kosovo serán más evidentes y los niveles de exposición, vulnerabilidad y riesgo de la población serán alarmantes.

Si se toma como referencia que la comunidad de Kosovo está en una superficie que abarca actualmente 11.1 ha (hectáreas) y que ya ha perdido 6.6 ha por ascenso del nivel del mar, es de esperarse que para el año 2030 se hayan perdido 1.32 ha de tierra firme en la zona.

Figura 4.

Áreas de Kosovo y Punta Zalazar mayormente afectadas por erosión costera e inundaciones.

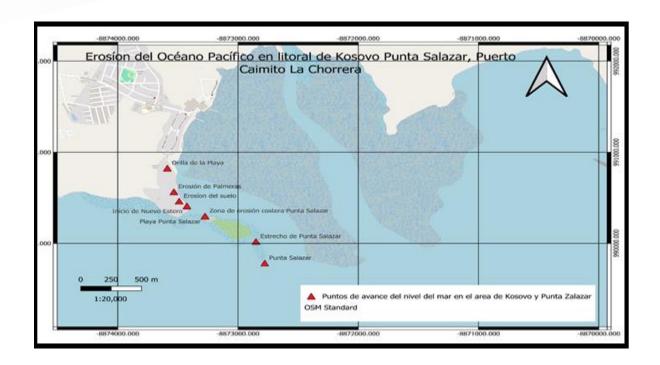
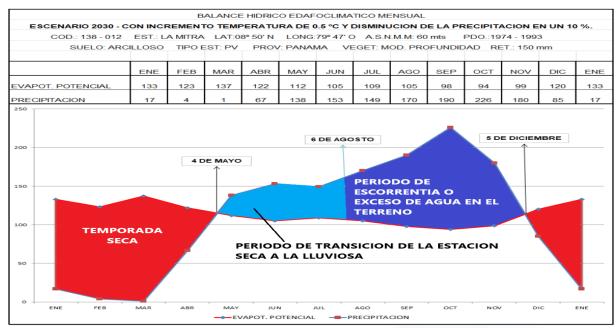



Figura 5. Balance hídrico edafoclimático mensual para el escenario 2030.

Escenario de cambio climático 2050 para el área objeto de estudio

Para el año 2050, se espera un incremento en la temperatura de 0.5° C sumado al de 2030, de 0.5°C; las temperaturas subieran un 1.0 C° en la región y disminución en la precipitación en un 10%. Tomando como base los datos meteorológicos de la estación La

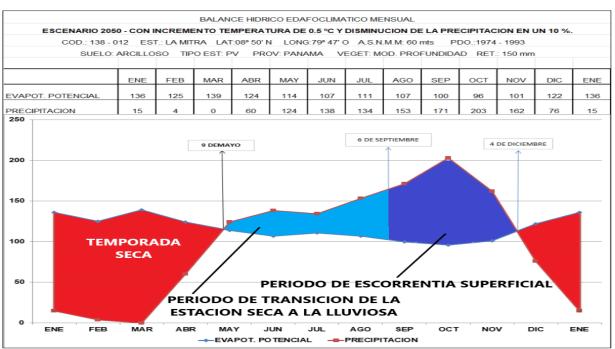
Mitra, será más evidente aún los cambios en los patrones climáticos.

Tabla 3.Balance hídrico edafoclimático del escenario 2050.

			541.441										
ESCENARIO 2050 -	CON IN	CREME						UCION E		RECIPIT	ACION E	EN UN 10) %.
COD.: 138 - 012	EST.:	LA MITE	RA LAT	08° 50' N	LONG	3:79° 47'	O A.S.I	N.M.M: 6	0 mts	PDO.:19	974 - 199	3	
SUELO: ARCILLOSO TIPO EST: PV PROV: PANAMA VEGET: MOD. PROFUNDIDAD RET.: 150 mm													
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Tot - Pr
EVAPOT. POTENCIAL	136	125	139	124	114	107	111	107	100	96	101	122	1382
PRECIPITACION	15	4	О	60	124	138	134	153	171	203	162	76	1240
PRECIP ETP	-121	-121	-139	-64	10	31	23	46	71	107	61	-46	
SUMA (VAL. NEGAT.)	-167	-288	-427	-491								-46	
ALMACENAJE	48	21	8	5	15	46	69	115	150	150	150	110	
DIFERENCIA DE ALMAC.	-62	-27	-13	-3	10	31	23	46	35	О	О	-40	
EVAPOT. REAL	82	34	16	70	114	107	111	107	100	96	101	116	1054
EXCESO DE AGUA	О	О	О	О	О	О	О	О	36	107	61	О	204
DEFICIT. DE AGUA	54	91	123	54	0	О	О	О	О	О	О	6	328
TEMPERATURA MEDIA	27.0	27.6	28.2	28.3	27.9	27.5	27.6	27.5	27.3	27.2	27.2	27.3	27.6
RADIACION GLOBAL	426	440	438	403	362	352	365	344	331	310	336	399	376

Para el año 2050, se espera que el total de precipitación anual disminuya en 301 milímetros, con respecto al total actual de precipitación. En el caso de la temperatura promedio se espera un incremento hasta de 27.6 °C (promedio anual 2050). Estos cambios en los patrones climáticos agravarán aún más la situación imperante por causa de estos cambios en los patrones climáticos.

Las actividades agrícolas y ganaderas se verán muy afectadas, poniendo en peligro la seguridad alimentaria. Las fuentes hídricas superficiales debido a la ausencia de lluvias, prácticamente harán que su caudal desaparezca. La temporada seca será más intensa, lo que ocasionará desabastecimiento de agua potable.



El periodo de transición de la estación seca a la lluviosa se extenderá a 109 días, lo que agudizará aún más el incremento de la exposición, vulnerabilidad y riesgo en la salud de la población.

Figura 6. Balance hídrico edafoclimático para el escenario 2050.

Para el año 2050 el incremento del nivel del mar será de 54 cm; esto quiere decir que el incremento se da a un ritmo de 1.08 cm por año. Para el escenario 2030, el incremento total será de 32.4 cm. A partir de este escenario los impactos en la comunidad de Kosovo serán más evidentes y los niveles de exposición, vulnerabilidad y riesgo de la población serán alarmantes.

Si tomamos como referencia que la comunidad de Kosovo está en un área que abarca actualmente 11.1 ha. y que ya ha perdido 6.6 ha, por ascenso del nivel del mar, es de esperarse que para el escenario 2050 se haya perdido 13.2 ha de tierra firme en la

comunidad. Esto quiere decir que la comunidad de Kosovo ya no existiría, puesto que quedaría sumergida por el ascenso del nivel del mar.

Tabla 4.Comportamiento del clima actual y con escenarios de cambio climático para la comunidad de Kosovo.

Escenario	INICIO DE LA TEMPORADA SECA	FIN DE LA TEMPORADA SECA	INICIO DEL PERIODO LLUVIOSO	INICIO DEL PERIODO DE TRANSICION		
ACTUAL	10 de dic	1 de mayo	2 de mayo	2 de mayo		
2030	6 de dic.	3 de mayo	4 de mayo	4 de mayo		
2050	5 de dic.	9 de mayo.	10 de mayo	10 de mayo		
Escenario	FIN DEL PERIODO DE TRANSICION	INICIO DEL PERIODO DE ESCORRENTIA	FIN DEL PERIODO DE ESCORRENTIA	FIN DEL PERIODO LLUVIOSO		
ACTUAL	5 de julio	6 de julio	9 de dic.	9 de dic.		
2030	6 de agosto	7 de agosto	5 de dic.	5 de dic.		
2050	6 de sept.	7 de sept.	4 de dic.	4 de dic.		

Nota. Datos tomados en base a los balances hídricos edafoclimáticos para el área objeto de estudio.

Resultados y discusión

Con el propósito de conocer de primera mano la percepción que tienen los residentes frente a los efectos del cambio climático y, principalmente, del ascenso del nivel del mar, se realizaron entrevistas exploratorias a tres residentes de Kosovo. Aunque estadísticamente no es una muestra representativa, los testimonios ofrecen una aproximación a la realidad diaria que enfrentan estos habitantes.

Estas entrevistas dieron acceso a información personal como tiempo de residencia en el área, número de integrantes del núcleo familiar y conocimiento o experiencia de eventos extremos como oleajes e inundaciones

A partir de estos testimonios se identificaron patrones y condiciones que intensifican la situación de vulnerabilidad de sus habitantes. En primer lugar, las tres personas han vivido más de 20 años en el área, pero, es importante destacar las diferentes perspectivas que se viven. Por ejemplo, el sr. Antonio Domínguez relató que construyó su casa ahí por desconocimiento del riesgo, y que en sus 21 años de residir en el área ha vivido diferentes oleajes e inundaciones. Él comprende que el aumento del nivel del mar está relacionado con el deshielo en el Ártico y reconoce que su hogar está en riesgo de pérdida total en un futuro cercano. A pesar de haber gestionado de manera legal la obtención de un lote en otra parte de la provincia, hasta el momento las autoridades competentes no le han dado respuestas. Además, considera que el desalojo seria la opción más adecuada para su familia, pero lamenta que en los últimos años las autoridades parecen haberlos dejado en el olvido.

Por otro lado, otra de las residentes entrevistadas mencionó que ha experimentado con preocupación los eventos de oleajes fuertes con inundaciones registrados en diciembre de 2024 y nuevamente en marzo de 2025, los cuales provocan el ingreso del mar a diferentes residencias y dejaron pérdidas materiales. Esto refuerza la percepción de que el riesgo se ha intensificado con el tiempo.

Durante el recorrido se pudo observar que la mayoría de las viviendas presentan materiales sumamente vulnerables como bambú, madera, láminas de zinc, pisos de tierra. Estas condiciones estructurales no pueden analizarse de manera aislada, sino como reflejo de las condiciones socioeconómicas del país que "agravan la situación de vulnerabilidad posicionando a las poblaciones en condición de pobreza y pobreza extrema en una doble desigualdad" (CEPAL, 2020, como se citó en MINSA, 2021, p. 17). En este sentido, las estructuras aumentan su fragilidad ante fenómenos como los oleajes o las mareas altas, situación que confirma la alta vulnerabilidad física del área objeto de estudio. Además, todos los entrevistados han sido testigos directos de eventos extremos relacionados con el mar y su aumento por cambio climático como oleajes e inundaciones que causan pérdidas materiales y daños en sus viviendas lo que deja en evidencia la

constante exposición al peligro. Sabiendo que "el IPCC (2014) la exposición a riesgos hace vulnerable a la comunidad su infraestructura y los habitantes que viven en ellas" (Magaña, 2013, como se citó en Castellano-Bahena, 2022, p.26)

Sin embargo, ninguno ha recibido asistencia formal ni soluciones concretas a la problemática por parte de las autoridades lo que reafirma la vulnerabilidad social e institucional frente a riesgos climáticos en el área.

Por otro lado, existe una organización comunitaria, liderada por los esposos Batista, la cual tiene como finalidad la búsqueda de nuevas oportunidades y alternativas para mitigar los efectos del aumento del nivel del mar. Dentro de sus planes destaca la creación de una ONG para presentar diversos proyectos que ya se han planteado pero que no se han llevado a cabo por falta de presupuesto o capital. Además, la organización *Encuentro de Mujeres* trabaja de la mano de los señores Batista brindándole apoyo técnico y social para buscar soluciones y han creado el plan *Salvando Comunidades Costeras*, el cual tiene el propósito de presentar proyectos como la reforestación de manglares para restaurar la barrera natural de la zona; entre otras actividades que se proyectan realizar está el mejoramiento de la flota artesanal en la comunidad y unas charlas para la formación de líderes comunitarios conscientes de la problemática del lugar a entidades como Fundación Natura y la ARAP.

Con relación al estudio desarrollado, se concluye que la comunidad de Kosovo, ubicada en el corregimiento de Puerto Caimito, provincia de Panamá Oeste, se encuentra altamente expuesta al riesgo asociado al ascenso del nivel del mar. Esta condición la convierte en una zona especialmente vulnerable ante los efectos del cambio climático, situación agravada por la falta de estrategias de gestión de riesgo adaptadas a sus características.

La recolección de datos permitió visibilizar las principales debilidades tanto de la comunidad como de las autoridades responsables. Se evidenció la falta de un plan de gestión de riesgos que responda a las características particulares de la comunidad, así

como el poco conocimiento de las tres personas en las razones que generan los peligros a los cuales están expuestos. La comunidad presenta una economía frágil, dependiente principalmente de la pesca artesanal, la recolección de moluscos y otras actividades asociadas al sector pesquero una actividad afectada por cambios en la salinidad marina. En resumen, este estudio promovió la obtención de conocimientos técnicos de las variables que influyen en la vulnerabilidad de la comunidad de Kosovo propensa a inundaciones costeras recurrentes.

Conclusiones

En esta investigación se determinó que en los últimos 30 años se ha perdido 1.0 km de litoral costero y 6.6 hectáreas de tierra firme en la comunidad de Kosovo debido al aumento del nivel del mar, los cambios en las corrientes marinas, la deforestación de manglares y mar de fondo produciendo afectaciones a las comunidades ya señaladas, dejándolas prácticamente incomunicadas durante mareas altas, por ejemplo a la comunidad de Punta Salazar solo puede llegarse caminando en marea baja, porque el mar a producido un estero en marea alta.

Un total de 6 casas de mampostería han sido destruidas y más de 30 casas son afectadas recurrentemente en los periodos de máximas mareas condenando estas comunidades en el futuro a migrar, convirtiéndose en migrantes climáticos, como ocurre en otras zonas de nuestro país y en otras partes del mundo.

En esta investigación se proponen algunas medidas de mitigación y resiliencia a esta problemática ambiental que afecta el litoral del corregimiento de Puerto Caimito como: impulsar campañas de sensibilización sobre el riesgo que implica el ascenso del nivel del mar, sus causas y consecuencias, para promover la organización comunitaria, la gestión y concientización para el conocimiento local. Asimismo, es necesario capacitar a los pobladores con técnicas primordiales de adaptación como sistemas de drenaje comunitario, manejo del agua de lluvia y construcciones resilientes con recursos accesibles.

Además, se recomienda establecer un dispositivo de comunicación directa entre la comunidad y autoridades como el Ministerio de Ambiente o el municipio de La Chorrera para, de esta manera, promover la creación de un plan de gestión que responda a las particularidades de la comunidad.

Otra medida que se debe tomar es la creación de un sistema de monitoreo comunitario de mareas, lluvias y eventos extremos que permita registrar alertas tempranas y, de esta manera, fortalecer la toma de decisiones desde la comunidad, es decir, desde el lugar de afectación esto para no estar esperanzados a los avisos que normalmente realiza el SINAPROC.

Figura 7. Casa destruida por el avance del nivel del mar la comunidad de Kosovo

Referencias bibliográficas

- Bevacqua, A., Yu, D., & Zhang, Y. (2018). Coastal vulnerability: Evolving concepts in understanding vulnerable people and places [La vulnerabilidad de las costas es un fenómeno espacial: una visión general de los modelos y enfoques de evaluación]. Environmental Science & Policy, 82, 19–29. https://www.sciencedirect.com/science/article/abs/pii/S1462901117311346
- Castellano-Bahena, H. V. (2022). Marco conceptual y metodológico del riesgo por seguía y sus componentes: amenaza, exposición y vulnerabilidad. Tecnología y Ciencias del Agua, 13 (3), mayo-junio-2022. https://www.revistatyca.org.mx/index.php/tyca/article/view/2482/2412
- CEPAL. (2010). La economía del cambio climático en Centroamérica: síntesis 2010. Comisión Económica para América Latina y el Caribe. https://repositorio.cepal.org/server/api/core/bitstreams/14e24162-ad01-46e6b42f-67boabofeda6/content
- Gordón, C. (2024, 11 de abril). Aumento del nivel del mar: impacto en las costas panameñas. Un análisis sobre los impactos en la población, infraestructura y usos de suelo. ArcGIS StoryMaps. https://storymaps.arcgis.com/stories/aab3536fe38b41d3a74f2bce632c2e57
- Ciniglio, S., Machado, V., Vallarino, R., & Grajales Saavedra, F., (2021). Análisis de aumento del nivel del mar en Isla Colón, Bocas del Toro. Revista de Iniciación Científica, 7(2), 39–49. https://doi.org/10.33412/rev-ric.v7.2.3337
- Masterson, V., Hall, S., & North, M. (2025, abril 15). Aumento del nivel del mar: todo lo que necesitas saber. Foro Económico Mundial. https://es.weforum.org/stories/2025/04/aumento-del-nivel-del-mar-todo-loque-necesitas-saber/
- Ministerio de Salud. (2021). Vulnerabilidad al cambio climático en la República de Panamá y su repercusión en la salud. https://www.minsa.gob.pa/sites/default/files/publicaciones/ vulnerabilidad al cambio climatico en la republica de panama y su repercusion en la sa lud 1.pdf
- Montenegro, E. (2024, marzo 13). Oleaje destruye una casa en Kosovo, Puerto Caimito. Panamá América. https://www.panamaamerica.com.pa/provincias/oleajedestruye-una-casa-en-kosovo-puerto-caimito-1233251
- Sistema Nacional de Protección Civil. (2016). Guía Municipal de Gestión de Riesgo de Desastres en Panamá [PDF]. SINAPROC. https://www.sinaproc.gob.pa/wpcontent/uploads/2020/05/Guia-Municipal-Panam%C3%A1.pdf

