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ABSTRACT 
Inversion of surface wave velocities in examples of multilayered anisotropic media is 

examined using an extension of the Smith-Dahlen formulation.  Thus, surface wave 

propagation in a slightly anisotropic earth model has been found and the inversion of 

the azimuthal dependence of surface wave dispersion curves has been performed.  

The inversion scheme proposed in this paper has been verified by numerical matrix 

inversion with a computer programme in FORTRAN code.  In two examples, 

hexagonal simmetry and 13 non zero canonical harmonic components, we have got 

results that show an excellent agreement between all phase velocities obtained for 

both Love and Rayleigh waves.  We also perform two additional experiments with 

observed data, Love and Rayleigh waves phase velocities results of previous studies 

carry out in the Pacific (Nishimura & Forsyth, 1985, 1988, 1989).  In these data test 

we also have a good agreement between observed and theoretical data.  

 

 

KEYWORDS 
Surface waves, dispersion, inversion, anisotropy. 

 

 

RESUMEN 
Se estudia la inversión de las velocidades de las ondas superficiales en ejemplos de 

medios anisotrópicos multiestratificados, usando una extensión de la formulación de  

Smith  & Dahlen.  Así,  es estudiada la propagación de ondas superficiales en un 

modelo de tierra ligeramente anisotrópico y llevada a cabo la inversión de la  

dependencia acimutal de la dispersión de las ondas superficiales.  El esquema de 

inversión   propuesto  en   este  artículo  ha  sido  verificado  por  inversión  numérica  
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matricial  con  un programa  de ordenador en lenguaje FORTRAN.  En dos ejemplos,  

simetría hexagonal y 13 componentes armónicos canónicos distintos de cero, hemos 

conseguido resultados que muestran un excelente acuerdo entre todas las velocidades 

de fase obtenidas para ambos tipos de ondas, Love & Rayleigh. También llevamos a 

cabo dos experimentos adicionales con datos observados: velocidades de fase de 

ondas Love & Rayleigh resultantes de estudios previos llevados a cabo en el Pacífico  

(Nishimura & Forsyth, 1985, 1988, 1989).  En estas pruebas con datos también 

obtenemos un buen acuerdo entre datos teóricos y observados.  
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INTRODUCTION 

Most possible constituents of the Earth are anisotropic on a small 

scale. Moreover, the mechanisms present today or in the past could 

cause alignment of this anisotropy over wide areas, particularly in 

the upper mantle.  This anisotropy has been evidenced in recent 

years for the upper mantle beneath oceans, which possesses an 

inherent slight anisotropy.  Thus, the existence of a slight 

anisotropy over wide areas in the Earth, probably due to a 

preferential alignment of olivine crystals in the upper mantle, 

should have an effect on the propagation of Love and Rayleigh 

surface waves.  For this reason, the study of surface wave 

propagation in slightly anisotropic structures, is of importance to 

seismology in determining of the presence or absence of anisotropic 

layers within the Earth.  The study of this problem, is possible on 

the base of a very simple hypothesis (Smith & Dahlen 1973): the 

azimuthal dependence of the surface wave phase velocity (Love or 

Rayleigh), c(,), in a slightly anisotropic structure is of the form: 

c(,) = c() + c(,); where c() is the isotropic phase velocity  

and  for Love wave the anisotropy term c(,) is of the form 
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and for Rayleigh wave 

(2) 

  4 sin )(R 4 cos )(R 2 sin )(R 2 cos )(R )(R
)(2G

1
),( 54321
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

 ++++

   

We introduce in the above equations GR() denoting the isotropic 

Rayleigh wave group velocity, and similarly GL() denoting the 

isotropic Love wave group velocity.  The effect of a slight anisotropy on 

the dispersion of surface waves is associated to the canonical harmonic 

components 
lm ( )z  through the expressions (1) and (2), where the 

components 
lm ( )z  are related with the elements of an arbitrary elastic 

tensor  ijkl z( )  (Smith & Dahlen 1973), giving the explicit dependence 

of the coefficients Ln() and Rn() on the anisotropic elastic properties 

 ( )z  of the half-space, are precisely the results that are required for an 

inversion of the data. 

 

Our purpose with this paper is to provide an inversion scheme for the 

Ln() and Rn() coefficients to determine the anisotropic structure, that 

is, the elastic tensor E(z) = E0(z) +  ( )z , where  ( )z  is a small 

perturbation.  The inverse problem for  ( )z  is an incomplete problem, in 

the sense of that not all 21 independent canonical harmonic components 


lm ( )z  appear explicitly, since only appear 13 independent canonical 

harmonic components.  Nevertheless, it is a linear inverse problem and its 

structure is well understood. The object of this paper is precisely to 

explore some cases of surface wave propagation in anisotropic media, and 

to use the inversion theory to obtain the elastic tensor E(z) = E0(z) + 

 ( )z .  This method should be an useful tool to study the anisotropic 

structure of wide areas of the Earth, if we have collected sufficient high-

quality dispersion data and the dominant isotropic properties of the 

medium are well known in advance. 

 

METHODS 

2. Analytical procedure 

The five coefficients Ln() for Love wave and the five coefficients 

Rn() corresponding to Rayleigh wave are related with the canonical 
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harmonic components 
lm ( )z . In particular, L5() and R5() depend 

explicate only on 
S

z44s( )  through the integral expressions  
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where W(z) is some scalar function of depth corresponding to the Love 

wave displacement field and V(z) is an analogue function corresponding 

to the Rayleigh wave horizontal  displacement.  In a multilayered  

anisotropic  medium, 
S

z44s( )  is constant in each layer, and then  
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where n is now the number of  layers of the earth model, di is the 

thickness of the ith-layer, and 
S

s
i

z44 ( )  is the canonical harmonic 

component for the ith-layer. Obviously, for R5() we write a similar  

relation.  Note that is possible introduce a matrix  formulation in the form 
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where j is a fixed angular frequency. Thus, the five coefficients Ln() 

for Love wave and the five ones Rn() for Rayleigh wave, are related 

explicitly with the canonical harmonic components  
lm ( )z  by means 

of five matrices whose elements are integrals of scalar functions of 

depth corresponding to the surface wave displacement field for each 

layer. We have a matrix relation of the form: L5 = A X; for the 

coefficient L5(), where (using the summation convention for repeated 

subscripts) 

 
L5 = ( L5

j)  (j = 1, 2, ... m)  ,,  L5

j = L5(j) L0(j) = Aji Xi  ,, X = (Xi )  (i = 1, 2, ... n)  ,,   Xi = S
s

i
z44 ( )  ,,  A = 

(Aji )   ,,   Aji =  Si(j) 
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Similarly, for the  rest of  coefficients  Ln()  and  Rn() we have 

matrix  relations  of  the form 

 

Ln = A X  ,, Rn = B X (n = 1, 2, ... 5)                 (3) 

 

Equations (3) are five linear relations of the coefficients Ln() and 

Rn() to the canonical harmonic components 

lm ( )z

i
 that are 

constants for each layer.  Then an inversion process to obtain 

lm ( )z

i
 

from the coefficients Ln() and Rn(), can be performed by linear 

inversion (Aki & Richards 1980) according to the generalized 

inversion theory (Tarantola 1987). 

 

 

RESULTS AND DISCUSSION 

3. Numerical procedure 

The remainder of the paper discusses two examples of seismic wave 

propagation in earth models with slight anisotropy. In both cases the 

dominant isotropic properties of the medium are the same, that is, we 

have considered the elastic isotropic tensor E z
ijkl
0 ( )  in which the Lamé 

constants are obtained from an isotropic earth model (Table 1). 

 
 
Table 1. Isotropic earth model considered in this study for numerical 

computation (: compressional seismic velocity; : shear velocity;: mass 

density). 

 
 

Thickness 

(km) 

 



 km/s) 

 



(km/s)

 



(g/cm3)

 

 

10 

 

5.80 

 

3.40 

 

2.70 

20 6.59 3.81 2.90 

80 8.135 4.670 3.324 

 9.00 5.40 3.60 
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Table 2. Stiffness tensor components in the matrix notation Eij (first 

example). Units are in GPa. 
 
 

    

Table 3. Stiffness tensor components in the matrix notation Eij (second 

example). Units are in GPa. 

 
 

                  

 

 

 

 

 

In the first case, the Table 2 shows the elastic anisotropic tensor E zijkl( )  

from the usual definition of matrix Eij, in which the indices i and j vary 

from 1 to 6 (Babuska & Cara 1991).  Likewise, the Table 3 gives E zijkl( )  

for the second example. In both cases, we obtain first the azimuthal 

variation of Love and Rayleigh wave phase velocity (fundamental mode) 

by means of the equation c(,) = c() + c(,), where c() is 

computed from the elastic isotropic properties related to the values given 

in table 1 (Abo-Zena 1979; Kennett & Clarke 1983), and c (,) from 

equations (1) and (2), in which the effect of a slight anisotropy is 

associated to  ijkl z( ) .  Any  tensor  component   ijkl z( )  is computed by 

E zijkl( )  - E z
ijkl
0 ( ) . In a second step, we compute the inversion of 
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relations (3) to obtain 

lm ( )z

i
 from the coefficients Ln() and Rn() 

calculated before.  To this end we take into account errors that usually 

remain in the estimation of surface wave dispersion data, such as errors 

in the origin time of the seismic events, digitisation or background 

noise; in practice, we can expect an uncertainty in Ln() and Rn() of 

approximately 1% in very homogeneous media. Thus, in this work we 

consider an uncertainty of 1% for the coefficients Ln() and Rn(in 

order to carry out the inversion process of relations (3) to obtain 

 ijkl z( ) .  In order to show that the results of first a second procedure 

give a good agreement between all phase velocities obtained for both 

Love and Rayleigh waves, the inversion scheme is tested in four 

examples to allow an efficient calculation procedure, which could be 

used to perform the inversion of azimuthal dependence of the surface 

wave phase velocity found in different regions of the Earth. 

 

4. Testing the inversion method 
For the testing of the inversion method proposed, we shall carry out 

the inversion of azimuthal dependence of Love and Rayleigh wave 

dispersion, in two numerical examples and two examples more with 

observed data. In the first numerical example, we shall consider an 

anisotropic structure with hexagonal symmetry.  In the second one, we 

shall consider a more general anisotropy case with 13  ijkl z( )  non-

zero stiffness tensor components.  Finally, we perform two 

experimental data test with Love and Rayleigh waves phase velocities, 

obtained in previous studies for the Pacific (Nishimura & Forsyth 

1985, 1988, 1989). 

 

Hexagonal symmetry 

Several studies (Nishimura & Forsyth 1989) show that realistic models 

are obtained by assuming transvers e isotropy (hexagonal symmetry) 

with the axis of symmetry oriented vertically.  For this reason we shall 

consider this kind of symmetry in the first example.  With this goal in 

mind, we take into consideration an earth model so that the elastic 

isotropic tensor is obtained from the parameters given in table 1, and the 

elastic anisotropic tensor E zijkl( )  is given in table 2.  Then, we  obtain  

the  Love  and  Rayleigh wave phase velocity (fundamental mode) and 

c(,)  from  equations  (1)  and  (2),  in  which  the  effect  of  a  slight  
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anisotropy is associated to  ijkl z( ) .  Finally, we compute the inversion of 

relations (3) to obtain 

lm ( )z

i
 from the coefficients Ln() and Rn() 

already calculated, by considering an uncertainty in Ln() and Rn() of 

approximately 1%. Results of this procedure for the perturbations of the 

stiffness tensor components are shown in table 4, in which we can see that 

it is possible to obtain  ijkl z( )  with a small error. 

 

13 canonical harmonic components non zero. 

In this second example we take into consideration the same starting 

earth model.  The elastic isotropic tensor is obtained again from the 

parameters listed in Table 1, but the elastic anisotropic tensor E zijkl( )  

is given now by Table 3.  As before, we obtain in this case the 

azimuthal variation of Love and Rayleigh wave phase velocity (see 

figures 1 and 2) from equations (1) and (2).  We compute the inversion 

of relations (3) to obtain 

lm ( )z

i
 from the coefficients Ln() and 

Rn() and with an uncertainty in Ln() and Rn() of approximately 

1%. Results of this procedure show again that it is possible to obtain 

 ijkl z( )  with a small error, also when the 13  ijkl z( )  are non zero. 

The outputs in terms of Love and Rayleigh wave phase velocity 

depending on the azimuth are shown in figures 1 and 2. 

 

 

Table 4.   Perturbations of the stiffness tensor components and 1- errors (ij 

 ij). Units are in Gpa. 
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Fig. 1. Azimuthal dependence of Love wave phase velocity in a slightly 

anisotropic structure with elastic parameters given by Table 3. 

 

 

 

Fig. 2. Azimuthal dependence of Rayleigh wave phase velocity in a slightly 

anisotropic structure with elastic parameters given by Table 3.
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First experimental data test. 

As an additional reliability test of the inversion method proposed, we 

perform the inversion of the observed Love and Rayleigh wave 

dispersion, determined in previous studies for the Pacific region 

(Nishimura & Forsyth 1985, 1988, 1989).  These dispersion curves are 

showed in the Figure 3,  for  all age  regions considered in this study 

(0-4, 4-20, 20-52, 52-110 and 110+ Myr), with standard deviations 

bars at its reference periods. We shall consider an anisotropic structure 

with hexagonal symmetry for the inversion of these regionalized 

dispersion curves, because no azimuthal dependence of surface waves 

propagation are given in these dispersion data. 

 

 
Fig. 3. Love and Rayleigh wave phase velocities used in this study 

(Nishimura & Forsyth 1985, 1988, 1989). For each age region we show a 

comparison between observed values (small circles with vertical  bars 

denoting 1- errors) and theoretical values (continuous line). Theoretical 

values showed in the upper part are predicted by forward modeling of the 

starting isotropic models (Table 5), and the other ones showed in the 

lower part are predicted by the final anisotropic model obtained by 

inversion (Table 6). 
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Previous to inversion process, we propose a starting isotropic earth 

model, for each region considered, as listed in Table 5.  In Figure 3 we 

observe a good agreement between theoretical Rayleigh wave 

dispersion curves (obtained by forward modelling of the isotropic 

models listed in Table 5) and the corresponding observed curves, for 

all regions.  Nevertheless, the Love wave theoretical dispersion curves 
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(Fig. 3) are in clear discrepancy with the respective observed curves. 

This fact is well know in regions of the Earth, like Pacific, in which 

anisotropy is present. This fact is called discrepancy Love-Rayleigh 

and it is a consequence of anisotropic properties of mantle materials. 

Then, Love and Rayleigh wave dispersion curves are not compatible 

with a unique isotropic model and it is necessary to consider an 

anisotropic model. For that reason, we perform here an anisotropic 

inversion.  

 

 
Table 5. Starting isotropic earth models proposed for each region 

considered in this study (: compressional seismic velocity; : shear 

velocity;: mass density). These regions has been obtained by a 

regionalization scheme based on the seafloor age (Nishimura & Forsyth 

1985, 1988, 1989),  as result of this procedure we have five age regions: 

0-4, 4-20, 20-52, 52-110 and 110+ Myr. 
 
 

AGE REGION 0-4 Myr  

__________________________________________________________________ 

Layer 

(nº) 

Thickness 

(km) 

  

(km/s)
 



(km/s) 



(g/cm3) 

 

1 

 

15 

 

6.80 

 

3.90 

 

2.90 

2 130 7.15 4.07 2.95 

3 200 7.75 4.50 3.35 

4 50 8.90 4.68 3.52 

5 50 9.15 4.85 3.65 

6 50 9.40 5.05 3.80 

7 50 9.68 5.19 3.89 

8 50 9.94 5.40 3.99 

9 50 10.30 5.64 4.12 

10  10.79 5.95 4.32 
__________________________________________________________________ 

                                            

AGE REGION 4-20 Myr 
 

__________________________________________________________________ 

Layer 

(nº) 

Thickness 

(km) 

 

(km/s)
 



(km/s) 



(g/cm3) 

 

1 

 

5 

 

6.80 

 

3.90 

 

2.90 

2 90 7.60 4.28 3.20 

3 50 7.25 4.18 3.10 

4 50 8.00 4.38 3.35 

5 100 8.70 4.60 3.50 

6 50 8.60 4.59 3.50 

7 50 8.84 4.72 3.56 

8 50 9.14 4.86 3.67 

9 50 9.34 5.04 3.75 

10 50 9.68 5.19 3.89 

11 50 9.94 5.39 3.99 

12 50 10.30 5.64 4.12 

13  10.79 5.95 4.32 
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AGE REGION 20-52 Myr 
 

__________________________________________________________________ 

Layer 

(nº) 

Thickness 

(km) 

 

(km/s)
 



(km/s) 



(g/cm3) 

 

1 

 

5 

 

6.80 

 

3.90 

 

2.90 

2 90 7.80 4.34 3.35 

3 50 7.80 4.30 3.35 

4 50 7.70 4.25 3.35 

5 50 8.10 4.45 3.35 

6 100 8.93 4.75 3.58 

7 100 9.14 4.87 3.67 

8 50 9.34 5.04 3.75 

9 50 9.68 5.19 3.89 

10 50 9.94 5.39 3.99 

11 50 10.30 5.64 4.12 

12  10.79 5.95 4.32 
__________________________________________________________________ 

 
AGE REGION 52-110 Myr 

 
__________________________________________________________________ 

Layer 

(nº) 

Thickness 

(km) 

 

(km/s)
 



(km/s) 



(g/cm3) 

 

1 

 

5 

 

6.80 

 

3.90 

 

2.90 

2 140 8.08 4.40 3.35 

3 50 7.60 4.20 3.35 

4 50 8.10 4.45 3.35 

5 100 8.93 4.75 3.58 

6 100 9.14 4.87 3.67 

7 50 9.34 5.04 3.75 

8 50 9.68 5.19 3.89 

9 50 9.94 5.39 3.99 

10 50 10.30 5.64 4.12 

11  10.79 5.95 4.32 
__________________________________________________________________ 

 

AGE REGION 110+ Myr 
 

__________________________________________________________________ 

Layer 

(nº) 

 

Thickness 

 (km) 

 

 
(km/s)

 
(km/s) 


(g/cm3) 

 

1 

 

20 

 

5.60 

 

3.30 

 

2.65 

2 75 8.70 4.73 3.45 

3 150 8.20 4.50 3.35 

4 100 8.60 4.55 3.50 

5 100 9.18 4.90 3.70 

6 50 9.34 5.04 3.75 

7 50 9.68 5.19 3.89 

8 50 9.94 5.39 3.99 

9 50 10.30 5.64 4.12 

10  10.79 5.95 4.32 

                   
 

This inversion process is the same to the above described (hexagonal 

symmetry epigraph), but now the effect of a slight anisotropy is 

associated (for each age region) to the second elastic layer of the Earth 

model. Thus, the stiffness tensor perturbations (  ijkl z( ) ) obtained by 

such inversion scheme are listed in Table 6. 
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Table 6. Perturbations of the stiffness tensor components and 1- errors (ij 

 ij), for each age region considered. Units are in Gpa. 
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                                           AGE REGION 4-20 Myr 

 

hexagonal :symmetry              
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                                         AGE REGION 20-52 Myr 

 

hexagonal :symmetry              
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                                     AGE REGION 52-110 Myr 

 

hexagonal :symmetry              
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AGE REGION 110+ Myr 

 

hexagonal :symmetry              

3g/cm 3.45 density              
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Table 7. Comparison of the V parameter obtained by Nishimura & Forsyth 

(1989) and that of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When we take to account an anisotropic model, we obtain a good 

agreement in both Love and Rayleigh theoretical dispersion curves and 

the respective observed curves (Fig. 3). This fact confirms that the 

final anisotropic model obtained is a valid Earth model, for each region 

considered. The final anisotropic model obtained for each age region is 

also in agreement with the another one obtained by Nishimura & 

Forsyth (1989), as it can see in Table 7.  We compare our v parameter 

with the corresponding parameter calculated by Nishimura & Forsyth, 

because the resolving kernels obtained by these authors clearly 

demonstrate that the dominant parameter in their inversion scheme 

is v. Moreover, the V parameter is the most resolvable parameter 

computed by these authors, as it is showed by the resolving kernels of 

the inversion process follow by themselves. 

 

Second experimental data test. 

In this second data test, we take to account the azimuthal variation of the 

Rayleigh wave dispersion joint to Love wave dispersion (Nishimura & 

Forsyth 1989) for determine an anisotropic model which satisfy these 

dispersion data jointly. As in the previous data test, we propose a 

starting isotropic earth model, for each region considered, as listed in 

Table 8.  In Figure 4 we observe a good agreement between theoretical 

Rayleigh wave dispersion curves (obtained by forward modelling of the 

isotropic models listed in Table 8) and the corresponding observed 

 
 

AGE REGION 

(Myr) 

 

 

Depth Range 

(km) 

 



V

*

(km/s)

 



V

+

(km/s)

 

 

0 – 4 

 

15 – 145 

 

4.472 ± 0.152 

 

4.02 – 4.43 

4 – 20 5 – 95 4.743 ± 0.132 4.13 – 4.58 

20 – 52 5 – 95 5.040 ± 0.178 4.21 – 4.61 

52 – 110 5 –145 4.192 ± 0.071 4.20 – 4.63 

110 + 20 – 95 4.699 ± 0.123 4.43 – 4.63 

(* This study) 
(+ Nishimura & Forsyth 1989) 
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curves, for both regions. Like the previous data test, the Love wave 

observed dispersion curves can not satisfy by an isotropic model (Fig. 4). 

Now, we perform an anisotropic inversion of azimuthal variation of the 

Rayleigh wave dispersion joint to Love wave dispersion, for each region 

considered, with 13 canonical harmonic components non-zero obtaining, 

as a result of this computation for each region, the stiffness tensor 

perturbations (  ijkl z( ) ) listed in Table 9. We observe again a good 

agreement in both Love and Rayleigh theoretical dispersion curves and 

the respective observed curves (Fig. 4).  

 

Table 8. Starting isotropic earth models proposed for the age regions: 0-80 and 

80+ Myr (: compressional seismic velocity; : shear velocity;: mass density).  
 

 

AGE REGION 0-80 Myr 

Layer (nº) Thickness (km)  (km/s)
 

(km/s) (g/cm3) 

1 5 6.80 3.90 2.90 

2 90 7.65 4.22 3.30 

3 100 7.60 4.20 3.30 

4 150 8.75 4.65 3.50 

5 50 8.84 4.72 3.56 

6 50 9.14 4.86 3.67 

7 50 9.34 5.04 3.75 

8 50 9.68 5.19 3.89 

9 50 9.94 5.39 3.99 

10 50 10.30 5.64 4.12 

11  10.79 5.95 4.32 

 
 

AGE REGION 0-80 Myr 

Layer (nº) Thickness (km)  (km/s)
 

(km/s) (g/cm3) 

1 20 5.60 3.30 2.65 

2 75 8.70 4.73 3.45 

3 150 8.20 4.50 3.35 

4 100 8.60 4.55 3.50 

5 100 9.18 4.90 3.70 

6 50 9.34 5.04 3.75 

7 50 9.68 5.19 3.89 

8 50 9.94 5.39 3.99 

9 50 10.30 5.64 4.12 

10  10.79 5.95 4.32 



Tecnociencia, Vol. 6, Nº 2 39 

Table 9. Perturbations of the stiffness tensor components and 1- errors (ij 

 ij) for both age regions: 0-80 and 80+ Myr. Units are in Gpa. 

 

 
                 AGE REGION 0-80 Myr    AGE REGION 80+ Myr 

 

 

                                    

 

Fig. 4. Love & Rayleigh wave phase velocities for the Pacific age regions: 0-80 

and 80+ Myr (Nishimura & Forsyth 1985, 1988 and 1989). For each age region 

we show a comparison between observed values (small circles with vertical bars 

denoting 1- errors) and theoretical values (continuous line).  Theoretical values 

showed in the upper part are predicted by forward modeling of the starting 

isotropic models, and the other ones showed in the lower part are predicted by 

the final anisotropic model.  
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Fig. 5. Rayleigh wave azimuthal anisotropy coefficients (sin 2 and cos 2) 

corresponding to 0-80 and 80+ Myr age regions of the Pacific (Nishimura & 

Forsyth 1989), are plotted with circles and squares respectively, vertical bars 

denote 1- errors. Theoretical values of the azimuthal anisotropy coefficients 

(continuous line) are predicted by the final anisotropic models. 

 

 

 

 

 

 

 

 

 

 

 

 
 

In the other hand, we also observe that the Rayleigh wave azimuthal 

anisotropy coefficients are also satisfies by the anisotropic models 

obtained for each region (Fig. 5).  

 

 

CONCLUSIONS 

Starting from the existence of a slightly anisotropy over wide areas in 

the Earth, the problem of the surface wave propagation in slightly 

anisotropic structures is re-visited from the Smith & Dahlen's 

hypothesis.  This problem is posed as a linear inversion one and the 

inversion scheme proposed is performed by numerical matrix 

inversion.  On this base, both forward and inverse modelling may be 

carried out, and in particular we can characterise a medium with 

slight anisotropy by the non zero stiffness tensor components 

computed from the azimuthal dependence of the surface wave 

velocity dispersion.  The corresponding numerical procedure is 

indeed easy to be implemented.  Four examples concerning to 

different anisotropic structures show the efficiency of our inversion 

scheme, which could be used to perform anisotropic inversion of 

surface wave velocity in the practice and to determine the anisotropic 

characteristics of some regions of the Earth.  Much more realistic 

earth models could so be obtained. 

 

 



Tecnociencia, Vol. 6, Nº 2 41 

ACKNOWLEDGEMENTS 

Helpful comments and suggestions from anonymous referees are 

gratefully acknowledged.  This research was partially supported by the 

Dirección General de Enseñanza Superior (DGES): projects PB96-0139-

C04-01-04 and by the Dirección General de Investigación, Ministerio de 

Ciencia y Tecnología, Spain: projects REN2000-1740-C05-03-04. 

 

 

REFERENCES 

Abo-Zena, A. 1979. Dispersion function computations for unlimited 

frequency values, Geophys. J. R. astr. Soc., 58,  91-105.  
 

Aki, K. &  P.G. Richards. 1980.  Quantitative Seismology. Theory and 

Methods, Freeman, San Francisco.  
 

Babuska, V. & M. Cara. 1991.   Seismic Anisotropy in the Earth, Kluwer 

Academic Publishers, Dordrecht, The Netherlands. 
 

Kennett, B. L. N. & T. J. Clarke.  1983.  Rapid calculation of surface 

wave dispersion, Geophys. J. R. astr. Soc., 72,  619-631. 
 

Nishimura, C. E. & D. W. Forsyth. 1985.  Anomalous Love-wave phase 

velocities in the Pacific: sequential pure-path and spherical harmonic 

inversion, Geophys. J. R. Astr. Soc., 81,  389-407.  
 

Nishimura, C. E. & D. W. Forsyth.  1988.  Rayleigh wave phase 

velocities in the Pacific with implications for azimuthal anisotropy and 

lateral heterogeneities, Geophys. J. R. Astr. Soc., 94,  479-501.  
 

Nishimura, C. E. & D. W. Forsyth. 1989 The anisotropic structure of the 

upper mantle in the Pacific, Geophys. J. Int., 96,  203-229. 
 

Smith, L. M. & F. A. Dahlen. 1973.  The Azimuthal Dependence of Love 

Wave Propagation in a Slightly Anisotropic Medium, J. Geophys. Res., 

78,  3321-3333.  
 

Tarantola, A. 1987.  Inverse Problem Theory. Methods for Data Fitting 

and Model Parameter Estimation, Elsevier, Amsterdam.  
 

 

 

Recibido septiembre  de 2003, aceptado enero  de 2004. 


