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ABSTRACT 

 
Hundreds or thousands of Near-Earth Asteroids (NEAs) are discovered every year, so being able to determine 

their orbits to follow them successfully in the future is essential to warn of the danger they could present. 

Numerous methods have been developed to improve the precision and efficiency of calculations used in the 

Initial Orbit Determination (IOD), with Gauss’s method being the benchmark due to its intuitive formulation, 

comparable precision, and historical importance. Herein, we present the results of the development of a new 
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open access tool to simplify the process of IOD of celestial bodies, specifically, NEAs. This tool was based on 

a modern implementation, using code written in Python to calculate, propagate, and graph the orbits. The results 

obtained from the test data exhibited significant accuracy, with the maximum discrepancy not exceeding 1.2% 

compared to the Horizons System tool, and the average being 0.5%. Furthermore, we found that for the Monte 

Carlo simulations that the code uses, 5,000 iterations were more than enough to achieve the obtained accuracy. 

 

KEYWORDS 

 
Asteroids, Astronomy, Celestial Mechanics, Gauss’ Method, Orbit Determination. 

 

RESUMEN 

 
Cada año se descubren cientos o miles de Asteroides Cercanos a la Tierra (NEAs, acrónimo en inglés de Near-

Earth Asteroids), por lo cual, ser capaz de determinar sus órbitas para seguirlos con éxito en el futuro es 

indispensable para advertir del peligro que estos podrían presentar. Numerosos métodos se han desarrollado 

para mejorar la precisión y eficiencia de los cálculos en la determinación inicial de la órbita (IOD, acrónimo en 

inglés de Initial Orbit Determination), siendo el método de Gauss la referencia debido a su formulación intuitiva, 

precisión comparable e importancia histórica. Aquí se presentan los resultados del desarrollo de una nueva 

herramienta de acceso abierto para simplificar el proceso del IOD de cuerpos celestes, específicamente, los 

NEAs. Dicha herramienta estuvo fundamentada en una implementación moderna, empleando un código escrito 

en el lenguaje de Python para calcular, propagar y graficar órbitas. Los resultados obtenidos para los datos de 

prueba exhibieron una precisión significante, con la discrepancia máxima no superando el 1.2 % en 

comparación con la herramienta Horizons System. Además, se encontró que para las simulaciones de Monte 

Carlo que el código emplea, 5 000 iteraciones fueron más que suficientes para alcanzar la precisión obtenida. 

 

PALABRAS CLAVES 

 
Asteroides, Astronomía, Mecánica Celeste, Método de Gauss, Determinación de la Órbita. 

 

INTRODUCTION 

 

Every year, hundreds or even thousands of Near-Earth Asteroids (NEAs) are discovered, 

both by professional astronomers and enthusiasts (Minor Planet Center 2023). Therefore, 

being able to determine their orbits in order to successfully track them in the future is crucial. 

Determining the orbits of celestial bodies is a problem that has occupied astronomers since 

ancient times. However, it was not until the beginning of the 19th century that a revolution 

in celestial mechanics took place, with the work of the German scientist Johann Carl 

Friedrich Gauss, in which he presented a new orbit determination method from which he 

obtained an estimate for the orbit of the newly discovered Ceres (Gauss 1809). From his 

method, numerous algorithms have been developed to improve the accuracy and efficiency 

of the calculations (Gibbs 1889; Herrick 1971), in addition to the creation of alternative 

methods (Escobal 1965; Gooding 1997) that are currently considered more favorable for 

many situations. Nevertheless, Gauss’s method is still used as a benchmark for evaluating 
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other methods because of its intuitive formulation, comparable accuracy, and historical 

importance (Schwab 2022). 

 

One of the main arguments for studies in the area is to improve monitoring systems. Detecting 

asteroids and calculating their orbits makes it possible to warn of the danger they could 

present, in other words, to know if they are Potentially Hazardous Asteroids (PHAs), 

classification given to those asteroids suspected of a collision trajectory with our planet in 

the next centuries (CNEOS Editors 2023) and those responsible for impact events with our 

planet. Two of these events, and the most significant, are those of Tunguska (1908) and 

Chelyabinsk (2013), in Russia. In the former, more than 2 000 km
2
of the Siberian taiga were 

obliterated and caused up to 3 reported deaths; while the latter resulted in damage to more 

than 7 000 buildings in 6 cities in the region, injuring thousands of people (Jay 2008; David 

2013). This highlighted the need for improved NEA detection and monitoring systems. Since 

then, efforts to identify and track NEAs and PHAs have intensified, as well as the 

development of strategies such as the Double Asteroid Redirection Test (DART) mission by 

NASA, which successfully altered the orbit of the asteroid Dimorphos (Bardan 2022).  

 

The main focus of this work consists in the presentation and analysis of a new open access 

tool developed to simplify the Initial Orbit Determination (IOD) of celestial bodies, with a 

specific focus on NEAs. This tool is based on a modern implementation of Gauss’s method, 

using a code written in Python to calculate, propagate and plot orbits. Furthermore, by being 

available to the public (at the GitHub repository github.com/joebro1907/NEIOD), it aims to 

encourage the participation of students, enthusiasts, and researchers in the celestial dynamics 

field, as well as computational physics. 

 

MATERIALS AND METHODS 

 

Gauss’s Method 

The method developed by Gauss is based entirely on the geometry of only three observations. 

His method provides an estimate of the three positions of the body from an eighth-order 

polynomial of the second position. Given the estimate of the three r⃗, a prediction of 

instantaneous v⃗⃗2 can be defined, thus completely defining the state vectors: (r⃗2, v⃗⃗2). 

 

At any point in time, the heliocentric position r⃗ will be given by (Figure 1): 

 

r⃗  =  q⃗⃗ + ρρ̂                                                         (1) 

 

where q⃗⃗ is the observer’s heliocentric position, ρ the body’s range (distance) to the observer, 

and ρ̂ its unit vector. The vectors q⃗⃗ and ρ̂ are defined by 

 

file:///C:/Users/ecama/Desktop/CARPETAS/Tecnociencia/Tecnociencia%20V27-1/Gauss%20y%20orbitas-2024-04-25/github.com/joebro1907/NEIOD
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q⃗⃗  =  q⃗⃗
⊕

 + p⃗⃗
obs

                                                     (2) 

ρ̂  =  cos(δ) cos(α) î + cos(δ) sin(α) ĵ + sin(δ) k̂                             (3) 

 

where q⃗⃗
⊕

 is Earth’s heliocentric position, p⃗⃗
obs

 is the observer’s geocentric position, and α 

and δ are the right ascension and declination (Curtis 2014).  

 

Figure 1. 

Geometry of the three observations [based on (Gronchi et al. 2021)]. 

 

 
 

One consequence of the two-body equation of motion is that, at any other time, the state 

vectors can be expressed in terms of the initial state vectors by means of Lagrange f and g 

coefficients. This means that it is possible to express r⃗1 y r⃗3 in terms of r⃗2 y v⃗⃗2: 

 

r⃗1  =  f
1
 r⃗2 + g

1
 v⃗⃗2                                                (4. a) 

r⃗3  =  f
3
 r⃗2 + g

3
 v⃗⃗2                                                (4. b) 

 

This is due to the fact that the Lagrange coefficients and their time derivatives in these 

expressions are functions of time and initial conditions themselves, thus allowing us to 
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express how the state vectors change along the orbit (Danby 1988). If the intervals τ1 and τ3 

between the three observations are small enough, f and g depend only on r⃗2: 

 

f
1
  ≈  1 - 

μ

2r2
3

τ1
2             f

3
  ≈  1 - 

μ

2r2
3

τ3
2                          (5. a) 

g
1
  ≈  τ1 - 

μ

6r2
3

τ1
3           g

3
  ≈  τ3 - 

μ

6r2
3

τ3
3                        (5. b) 

 

where τ1 = t2 - t1, τ3 = t3 - t2, and μ = 1.327×1020 m3∙ s-2 (Sun’s standard gravitational 

parameter, product of its mass and the universal gravitational constant). 

 

The slant ranges ρ
1
, ρ

2
, and ρ

3
 are given by 

 

. ρ
1
  =  

1

D0

[
6r2

3 (
τ1

τ3
D31 +

τ
τ3

D21) + μ(τ2 - τ1
2)

τ1

τ3
D31

6r2
3 + μ(τ2 - τ3

2)
 - D11]                 (6. a) 

. ρ
2
  =  A + 

μB

r2
3

                                                                                             (6. b) 

. ρ
3
  =  

1

D0

[
6r2

3 (
τ3

τ1
D13 +

τ
τ1

D23) + μ(τ2 - τ3
2)

τ3

τ1
D13

6r2
3 + μ(τ2 - τ1

2)
 - D33]                 (6. c) 

 

where A, B, D0, and Dij are 

A  =  
1

D0

(-
τ3

τ
D12 + D22 - 

τ1

τ
D32)                                       (7. a) 

 

B  =  
1

6D0

[(τ3
2 - τ2)

τ3

τ
D12 + (τ2 - τ1

2)
τ1

τ
D32]                  (7. b) 

D0  =  ρ̂
1
 ∙ (ρ̂

2
 × ρ̂

3
)                                                                      (7. c) 

Dij  =  q⃗⃗
i
 ∙ (ρ̂

k
 × ρ̂

l
)                                                                       (7. d) 

 

To calculate r⃗2, one can use the square of equation 1 with the new expression for ρ
2
: 

 

r2
2  =  (A + 

μB

r2
3
)

2

+ 2E (A + 
μB

r2
3

)  + q
2

2 

 

where E = q⃗⃗
2

 ∙ ρ̂
2
. Expanding and rearranging terms leads to the eighth-order polynomial 

r2
8 + k2r2

6
 + k1r2

3 + k0 = 0, with its the coefficients being 
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k2  =  -(A
2
 + 2AE + q

2
2),       .k1  =  -2μB(A + E)      y      k0  =  -μ2B2 

And the speed v⃗⃗2 is given by 

 

v⃗⃗2  =   (
f
1
r⃗3 - f

3
r⃗1

g
3
 f

1
 - f

3
 g

1

)                                               (8) 

 

It is important to keep in mind that there is a limit to the angular (thus temporal) separation 

between observations. Separations that are too small lead to numerical instability, especially 

when measurement noise can be dominant; conversely, too large of a separation renders 

approximations useless (Tennenbaum & Director 1997). This results in an upper limit around 

60°, as indicated by (Escobal 1965) and (Long et al. 1989), and a lower limit of approximately 

1°, according to (Vallado 2013), who states that the method works especially well when the 

separation is about 10°. 

 

Classical Orbital Elements 

Once the state vectors are calculated, the orbital elements can be obtained using equations 

which can be found in (Curtis 2014). The elements give the shape and orientation of the orbit 

in space (Figure 2). These elements are: 

 

• Eccentricity, e: elongation of the orbit.  

• Semi-major axis, a: half the length of the line joining the points of perihelion and aphelion 

(least and greatest distance from the Sun, respectively).  

• Inclination, i: angle between the body’s orbital plane and the ecliptic (Earth's orbital 

plane). 

• Longitude of the Ascending Node, Ω: angle between the direction of the vernal equinox 

(point on the ecliptic at which the Sun passes from the southern celestial hemisphere to 

the northern) and the ascending node (intersection point of the orbital plane and the 

ecliptic, in the upward direction). 

• Argument of Perihelion, ω: angle between the ascending node and the perihelion. 

• True Anomaly, ν: angle between the perihelion and the body’s current position. 

 

In the case of parabolic and hyperbolic orbits, a is not defined (since these are open conic 

sections), so the Perihelion Distance, q, is used. However, both parabolic and hyperbolic 

NEAs are rare. 
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Figure 2. 

The classical orbital elements and state vectors [based on (Barbee 2005)]. 

 

 
 

 

 

Monte Carlo Method 

It is not reasonable to propagate errors in a traditional way when using extensive and iterative 

algorithms such as this one. Therefore, the Monte Carlo method is usually chosen to calculate 

uncertainties since it has been consistently considered a reliable approach and has had wide 

application in the validation of uncertainty propagators, whether linear or nonlinear in nature. 

(Ding et al. 2014; Luo & Yang 2017). In the sampling use case, the Monte Carlo method 

simply involves random sampling from a certain probability distribution (Kroese et al. 2014). 

The idea is to repeat the algorithm or procedure numerous times in order to obtain the 

quantities of interest using the Law of Large Numbers, a mathematical theorem that states 

that the average of the results obtained from a large enough number of independent random 

samples converges to the true value, if it exists (Yao & Gao 2015). This way, we can get the 

mean value and standard deviation of the simulations, and therefore the uncertainties. 
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Python Code 

The code was written with the popular code development software Sypder IDE and is based 

on Python version 3.11. This code was made on the basis of Gauss’s method algorithm 

developed by (Curtis 2014), which has been translated into the Python language and modified 

to accommodate our implementation. In addition, we made use of popular astronomy 

libraries (Table 1). 

 

Table 1.  

Python libraries used in the code, essential for various functions and routines. 

 

Library Description Creators 

Astropy Core Python package for astronomy, providing tools for celestial 

calculations. 

(Price-Whelan et al. 

2018) 

Astroquery Simplifies querying of astronomical databases and web services (Ginsburg et al. 2019) 

Matplotlib Popular library for creating 2D graphs and charts (Hunter 2007) 

Numpy Fundamental library for scientific computing with arrays and 

mathematical functions 

(Harris et al. 2020) 

Pandas Data manipulation and analysis library with DataFrames and data 

arrays 

(McKinney 2010) 

Poliastro Library specializing in astrodynamics and orbital mechanics (Rodríguez et al. 

2023) 

SciPy Extends Numpy with advanced scientific computing capabilities (Virtanen et al. 2020) 

 

The code was written to make its operation as intuitive as possible. Once executed, it runs on 

a terminal window. Firstly, the program asks for observational data: depending on the user, 

this can be collected either automatically by reading a text file formatted in the Astrometry 

Data Exchange Standard (ADES) format, or by entering it manually. This data includes: the 

α and δ values with their respective RMS errors for each of the three observations, the 

corresponding dates, the NEA identification number, if known, given by the Minor Planet 

Center (MPC, official body for observing and reporting on minor planets under the auspices 

of the International Astronomical Union) and the observatory code, also assigned by the 

Minor Planet Center, if it has one (otherwise the geographic coordinates must be entered). 

After entering all this data, the user will have specified the number N of Monte Carlo (MC) 

simulations (a value between 5,000 and 10,000 is recommended) to be done. Before any 

calculation, we made sure that the code applied Light-Time Correction (LTC) to the dates, 

due to the fact that in reality, the observed positions would correspond to when the light “left” 

the NEA, so there is a delay. It is calculated with ρ and the speed of light c (Gronchi 2013): 

 

δt  =  
 ρ

c
                                                       (9) 
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Once this correction is applied, Monte Carlo simulations are done by randomly generating N 

(α, δ) coordinates for each observation, drawn from the normal distributions defined by their 

uncertainties. The simulations then proceed by using these coordinates in the Gauss's method 

algorithm for calculating the corresponding state vectors, and iteratively refining them. The 

refined state vectors are then used to determine the classical orbital elements as well as the 

mean anomaly M, orbital period T, mean motion n, perihelion distance q, aphelion distance 

Q, and perihelion epoch tp. Both the state vectors and the orbital elements are transformed to 

the ecliptic reference plane with the equations by (Vallado 2013; Sharaf et al. 2014). After 

this, using the SciPy library, the average from each state vector in the MC simulations is 

calculated with its respective standard deviation, and the same is done for the orbital 

elements. Once the orbit is calculated, if the NEA is known, the code validates the results by 

comparing the orbital elements with the ones given by Horizons System, an online service by 

the Solar System Dynamics Group of NASA's JPL for calculating ephemeris (positions) and 

other high-precision data for bodies in our solar system (Giorgini & SSD Group 2022); 

otherwise, it queries the JPL Small-body Database (SBDB) for possible matches. In either 

case, a text file is then generated with the results, including observational data, observation 

arc (time between the first and last observation), state vectors, and orbital elements with their 

comparison. In addition, the angular separation θ (angular distance between the first and last 

observation) is included: 

 

θ  =  cos-1[sin(δ1) sin(δ3) + cos(δ1) cos(δ3) cos(α1 - α3)]                  (10) 

 

As a next step, from the orbital elements, the code creates graphics as a visual representation 

of the NEA orbit, from different views. Finally, the user is given the option to generate 

ephemerides for the asteroid. To do this, the method of propagating  
r⃗2 with the f and g coefficients is used (Lee et al. 2019). Throughout the entire run, the code 

lets the user know what it is doing. It is important to note that the code requires an internet 

connection at all times to access most tools and services. The recommended value for N was 

determined with modified versions of the code to calculate the computation time and the 

consistency of the results for values of N that would be frequently used in MC simulations: 

1,000, 5,000, 10,000, 50,000 and 100,000, with 10 iterations each to determine their average. 

We used observational data (Table 2) obtained from the March 15, 2024 Minor Planet 

Circulars Supplement (Minor Planet Center 2024) with uncertainties of 4.0×10-6° and 

4.0×10-5° for α and δ, respectively, since these were not provided, and we wanted to adhere 

to MPC’s astrometry reporting standards (Project Pluto 2023). 
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Table 2.  

Observational data with the corresponding observation arc and angular separation (between 

each first and last observation). 

 

NEA Epoch (LTC UTC) α [°] δ [°] θ [°] Obs. Arc [d] 

1995 FO 2024-02-27 01:13:56.874 141.607171 -24.26946 25.765 16.155 

 2024-03-06 21:57:08.999 148.803975 -9.74072   

 2024-03-14 04:57:05.948 153.047900 -1.00581   

2024 ED4 2024-03-12 08:41:43.720 170.134933 -7.38124 2.434 1.822 

 2024-03-13 22:18:11.238 172.010721 -8.33164   

 2024-03-14 04:25:06.806 172.334958 -8.46681   

85095 Hekla 2021-08-04 18:59:36.321 1.27685 -7.40092 12.471 40.966 

 2021-08-29 18:23:33.218 355.39752 -5.24053   

 2021-09-14 18:10:57.900 349.22838 -3.96226   

200974 2024-03-01 11:56:51.783 158.471079 9.50644 2.986 12.703 

 2024-03-06 08:25:22.276 157.295863 9.87134   

 2024-03-14 04:48:37.681 155.573779 10.38525   

526142 2024-03-02 08:53:24.303 178.233829 8.83903 2.785 11.970 

 2024-03-06 09:05:28.550 177.390371 9.21129   

 2024-03-14 08:10:49.216 175.630033 9.91533   

 

RESULTS AND DISCUSSION 

 

Computation Time 

As expected, the code took longer when choosing larger N values (Table 3). In addition, it is 

seen that, with the exception of 1995 FO, the computation times were similar for each NEA 

at the respective N values (Figure 3). 
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Table 3. 

Calculation time [s] per N value for each NEA. 

 

N 1995 FO 2024 ED4 85095 Hekla 200974 526142 

1 000 30.353 10.212 12.079 10.899 10.459 

5 000 129.17 28.729 35.147 32.823 27.397 

10 000 257.84 52.713 62.732 53.539 47.078 

50 000 1225.514 248.483 280.655 249.538 213.167 

100 000 2521.983 457.661 564.805 468.083 437.314 

 

Performing an analysis of the code we found that this discrepancy between the computation 

times for 1995 FO is due to the iterative improvement routine in Gauss’s method. It turns out 

that 1995 FO required 5 to 7 times more iterations to achieve state vectors convergence: 270 

versus 34, 54, 43 and 37, respectively. This is because the (fixed) tolerance is set to 1.0×10-10 

to ensure accuracy, therefore, lowering it would reduce the required iterations and 

computational time, in spite of accuracy, of course. 

 

Figure 3. 

Calculation time for each N. The discrepancy in 1995 FO times (in red) can be seen. 
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Comparing the times shows that 10,000 iterations of the MC simulation took about one 

minute to complete, so we consider them to be convenient values. Clearly, if time were the 

only priority, 1,000 would be the best choice. Additionally, computation times depend on the 

processing power of the user's computer, logically; therefore, the code was run on a personal 

desktop computer of modest specifications (Inter Core i7-11700F CPU and 16 GB of RAM), 

to simulate an average modern user. 

 

Dispersion and Discrepancy of Calculation 

Comparing the computational discrepancies for each N (Table 4) we appreciate that the 

discrepancies of the results with the Horizons System reference values did not vary 

significantly, so increasing N does not necessarily lead to more accurate results; in fact, it 

only increases the computational demand and, therefore, the computation time. This is what 

is known as diminishing returns, when after a certain threshold, increasing N will not result 

in noticeable improvements in accuracy (Figure 4). 

 

Table 4. 

Discrepancy of classical orbital elements with those of the Horizons System for each NEA 

varying N. The values correspond to the average of 10 iterations. 

 

NEA N Δe Δa [AU] Δi [°] ΔΩ [°] Δω [°] Δν [°] 

1995 FO 1 000 0.00032 0.00079 0.01035 0.00478 0.01116 0.00810 

 5 000 0.00031 0.00077 0.01014 0.00469 0.01095 0.00796 

 10 000 0.00032 0.00077 0.01016 0.00470 0.01097 0.00797 

 50 000 0.00032 0.00077 0.01020 0.00472 0.01102 0.00800 

 100 000 0.00032 0.00077 0.01019 0.00471 0.01101 0.00800 

2024 ED4 1 000 0.00074 0.00320 0.00156 0.07789 0.15942 0.08199 

 5 000 0.00075 0.00323 0.00153 0.07809 0.15970 0.08207 

 10 000 0.00075 0.00323 0.00153 0.07813 0.15978 0.08211 

 50 000 0.00075 0.00323 0.00154 0.07810 0.15974 0.08210 

 100 000 0.00075 0.00323 0.00153 0.07814 0.15979 0.08211 

85095 Hekla 1 000 0.00010 0.00011 0.00450 0.00005 0.00395 0.00456 

 5 000 0.00010 0.00011 0.00457 0.00005 0.00420 0.00481 

 10 000 0.00010 0.00011 0.00458 0.00005 0.00424 0.00486 

 50 000 0.00010 0.00011 0.00457 0.00005 0.00419 0.00481 

 100 000 0.00010 0.00011 0.00457 0.00005 0.00419 0.00481 

200974 1 000 0.00176 0.00223 0.00875 0.02862 0.79071 0.81049 

 5 000 0.00165 0.00210 0.00824 0.02700 0.74989 0.76853 
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 10 000 0.00159 0.00204 0.00799 0.02624 0.73326 0.75137 

 50 000 0.00163 0.00208 0.00817 0.02678 0.74539 0.76388 

 100 000 0.00165 0.00210 0.00824 0.02699 0.74982 0.76846 

526142 1 000 0.00131 0.00021 0.00510 0.02326 0.65304 0.68059 

 5 000 0.00130 0.00018 0.00522 0.02478 0.67272 0.70186 

 10 000 0.00130 0.00019 0.00521 0.02468 0.67089 0.69993 

 50 000 0.00130 0.00019 0.00519 0.02440 0.66751 0.69626 

 100 000 0.00130 0.00019 0.00519 0.02447 0.66875 0.69756 

 

Figure 4. 

Non-linear variation reduction in some 1995 FO elements for each N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the most important thing in this regard is to choose a value of N that results in the 

least dispersion, i.e., the greatest consistency in the results. We determined then that if the 

only priority were consistency, 100,000 would be the best choice. 
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Determination of N 

A value for N should be chosen with these two considerations (low variability and short 

calculation time). To determine such value, we used a weighted sum model the following 

way: a weight of 7.5 was given to accuracy, given as the 1-to-5 scoring of the average 

discrepancy across the elements for each N (smaller discrepancy, higher score); and a weight 

of 2.5 was given to the computing time, given as the 1-to-5 scoring of the average time for 

each N (smaller time, higher score). This means a maximum score of (7.5)(5) + (2.5)(5) = 50 

points. All of this for each NEA, with their score sum determining the final ranking (Table 

5). 

 

Table 5. 

Weighted scoring of N. The points are the sum of the score for each NEA. 

 

N 
Points per NEA (time and accuracy) 

Total Rank 
1995 FO 2024 ED4 85095 Hekla 200974 526142 

1 000 20 50 30 20 35 155 2 

5 000 48 40 25 35 25 173 1 

10 000 20 28 35 35 35 153 3 

50 000 20 30 30 35 28 143 4 

100 000 25 10 25 25 25 110 5 

 

We thus determine that the value of N that presents a good balance between the variation of 

results and the calculation time is 5,000. 

 

CONCLUSIONS 

 

Our code developed in Python allows us to successfully compute the initial orbit of NEAs 

from three observations of right ascension α and declination δ, using Monte Carlo simulations 

to obtain the osculating ecliptic orbital elements. The results are sufficiently accurate 

compared to the reference values by the Horizons System, so the discrepancies are more than 

acceptable for this type of study. Finally, the developed code has the flexibility and scalability 

in mind to adapt to different data sets (and therefore, types of orbits) in addition to possible 

expansions, one of the main reasons for using the Python language since the scope of this 

work is the creation of an open access tool for the scientific community that facilitates and 

simplifies the process of studying these bodies. 
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