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ABSTRACT 
Most important features of the earth structure can be studied through the analysis of 

Rayleigh wave dispersion.  This consists on its filtering and inversion to obtain shear 

wave velocity distribution with depth.  I have applied this analysis to show lithospheric 

structure of South Iberia, by means of a set of 2D images of shear velocity for depths 

ranging from 1.5 to 46 km. The data used to obtain Rayleigh wave dispersion are the 

traces of 44 earthquakes, occurred on the neighbouring of Iberia. These earthquakes 

have been registered at 3 WWSSN stations located on Iberia. These stations have been 

considered because period range of best registration for WWSSN seismograph is the 

more suitable to explore the elastic structure of the Earth, for the depth range which is 

the objective of this study.  I have proceeded to group all seismic events in source 

zones to obtain a dispersion curve for each path source-station.  Dispersion curves are 

obtained by digital filtering with a combination of MFT and TVF filtering techniques. 

Thus, a set of source-station averaged dispersion curves was obtained.  This set of 

dispersion curves is inverted according to generalized inversion theory, to obtain shear 

wave velocity models for each source-station path.  These models can be interpolated 

to obtain a 2D mapping of the elastic structure of South Iberia, by kriging method. This 

mapping reveals the principal structural features of South Iberia and surroundings 

zones.  Such features, as the existence of lateral and vertical heterogeneity in the study 

area, also can be seen in Moho depth mapping presented in this paper.  Finally, I want 

to remark that no shear velocity models have been obtained for intermediate depths 

(5 to 30 km), up to date, for the Iberian area.  For this reason, this is the goal of the 

study presented in this paper. 
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RESUMEN 
Las características más importantes de la estructura terrestre pueden ser estudiadas 

por medio del análisis de la dispersión de las ondas Rayleigh.  Este análisis consiste 

en filtrado e inversión para obtener la distribución de velocidad de la onda de cizalla 

con la profundidad. Como ejemplo, se ha aplicado este análisis para mostrar la 

estructura litosférica del sur de Iberia, por medio de un conjunto de imágenes 2D de 

la velocidad de cizalla para profundidades que van desde 1.5 a 46 km. Los datos 

usados para obtener la dispersión de ondas Rayleigh han sido las trazas de 44 

terremotos, ocurridos en las proximidades de Iberia. Estos terremotos han sido 

registrados en 3 estaciones WWSSN situadas en Iberia.  Estas estaciones han sido 

elegidas porque el rango de periodo en el cual registra mejor el sismógrafo WSSSN, 

es el más adecuado para explorar la estructura terrestre, dentro del rango de 

profundidad que es objetivo de este estudio. He procedido a agrupar todos los 

eventos sísmicos en zonas fuente para obtener una curva de dispersión para cada 

trayectoria fuente-estación.  Las curvas de dispersión son obtenidas por filtrado 

digital con una combinación de las técnicas de filtrado MFT y TVF.  Así, obtengo un 

conjunto de curvas de dispersión fuente-estación. Este conjunto de curvas de 

dispersión es invertido de acuerdo con la teoría de la inversión generalizada, para 

obtener modelos de velocidad de onda de cizalla para cada trayecto fuente-estación. 

Estos modelos pueden ser interpolados para obtener un mapa 2D de la estructura 

elástica del sur de Iberia, por el método de kriging.  Este mapa revela las principales 

características estructurales del sur de Iberia y zonas próximas.  Tales características, 

como la existencia de lateral y vertical heterogeneidad en el área de estudio, también 

pueden ser vistas en el mapa de profundidad del Moho presentado en este artículo. 

Finalmente, quiero señalar que, hasta la fecha, no se han obtenido nunca modelos de 

velocidad de cizalla para el rango de profundidad intermedia considerado en este 

estudio (desde 5 a 30 km), en el área ibérica. Por ello, este es el objetivo del estudio 

presentado en este artículo. 
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INTRODUCTION 

As it is well know, surface waves show dispersion along the 

propagation path and this dispersion is related to the Earth structure 

crossed by the waves. This basic property allows using of dispersion 

analysis techniques as a tool to study important features of the Earth 

structure. Such kind of analysis consists on filtering and inversion of 

surface waves to obtain shear wave velocity versus depth.  A pioneer 
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study of dispersion analysis carried out in the Iberian Peninsula, by 

Payo (1965), was an estimation of Rayleigh wave dispersion along a 

path between the two WWSSN stations at Toledo and Malaga, to 

obtain the first shear velocity model for Iberia. Later, several shear 

velocity models have been obtained for this study area for deep 

structure with depths raging 30 to 250 km (Badal et al., 1990; Corchete 

et al., 1993, 1995) and for shallow depths from 0 to 5 km (Navarro et al., 

1997; Chourak et al., 2001, 2003).  Nevertheless, no shear velocity 

models have been obtained for intermediate depths (5 to 30 km); this is 

the goal of the study presented in this paper. Thus, the purpose of this 

paper is to show the South Iberian lithosphere structure by means of a 

set of 2D images of shear velocity for depths ranging from 1.5 to 46 

km. This study will be completed in the future by the obtaining of a set 

of images for the Northern part of Iberia. 

 

Data set 

44 earthquakes occurred in the neighbouring of Iberia, have been 

considered in this study (Table 1). These earthquakes have been 

registered at 3 WWSSN stations located in this region. I considered LP 

instruments of the WWSSN stations because the period range of best 

registration for these seismographs is between 5 to 45 s, as it can be 

seen in the Figure 1.  
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Table 1. List of events used in this study. 

Event              Date                    Origin Time               Location 

nº D  M  Y       Hr Min Sec   Lat (ºN)                 Long (ºE) 

1 04 09 1963 05 06 42.0 36.000 5.200 

2 15 11 1964 20 03 52.0 34.800 -   5.400 

3 07 09 1965 06 16 47.0 35.200 4.500 

4 26 08 1966 05 56 19.0 38.100 -   8.600 

5 27 05 1967 01 54 24.0 35.700 -   0.200 

6 13 07 1967 02 10 24.0 35.400 -   0.200 

7 06 03 1969 19 23 43.0 36.200 - 10.700 

8 20 04 1969 16 12 13.0 35.800 -   9.200 

9 05 05 1969 05 34 25.0 36.000 - 10.300 

10 06 09 1969 14 30 35.0 36.900 - 12.000 

11 30 12 1970 20 57 29.0 37.100 - 14.500 

12 16 03 1972 21 31 33.0 37.400 -   2.300 

13 18 04 1972 05 51 51.0 36.300 - 11.200 

14 24 08 1973 10 50 57.0 36.000 -   2.100 

15 24 11 1973 15 22 09.0 36.100 4.400 

16 24 11 1973 14 05 49.0 36.100 4.400 

17 25 11 1973 04 20 25.0 36.100 4.400 

18 28 06 1974 11 09 35.0 36.300 5.300 

19 29 06 1974 01 06 52.3 36.300 5.200 

20 13 07 1974 15 57 20.0 35.900 4.700 

21 14 04 1977 07 17 10.1 36.180 5.360 

22 14 08 1978 14 17 50.3 36.300 -  7.000 

23 09 05 1980 09 21 36.7 35.430 1.100 

24 13 10 1980 14 33 48.2 36.280 1.290 

25 14 10 1980 17 35 02.1 36.220 1.330 

26 15 10 1980 03 17 24.7 36.190 1.290 

27 19 10 1980 21 47 24.2 35.510 1.200 

28 22 10 1980 16 23 15.8 36.220 1.280 

29 23 10 1980 09 57 56.7 36.350 1.320 

30 30 10 1980 23 38 14.9 36.180 1.340 

31 01 02 1981 23 00 42.0 36.370 1.640 

32 05 02 1981 09 12 33.2 36.350 1.440 

33 14 02 1981 13 15 18.0 35.850 1.220 

34 20 02 1981 20 41 02.9 35.400 1.180 

35 19 04 1981 19 29 35.4 35.510 -0.240 

36 11 09 1982 21 35 51.9 36.320 1.600 

37 11 09 1982 04 48 41.6 35.560 1.310 

38 15 11 1982 20 07 52.4 35.590 1.250 

39 24 01 1983 16 34 09.4 39.720 - 14.480 

40 31 03 1984 03 31 56.0 36.410 1.520 

41 27 10 1985 19 34 59.7 36.380 6.710 

42 12 02 1989 12 02 21.6 36.330 2.600 

43 

44 

12 04 1990 

19 01 1992 

22 47 55.6 

20 21 33.1 

36.740 

36.090 

2.480 

1.520 
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Fig. 1. Frequency dependent response characteristics for LP-WWSSN 

seismograph system. 

 

This range of period is the more suitable to explore the elastic structure 

of the Earth, for a depth range which is the objective of this study 

(from 5 to 30 km of depth, approximately). 

 

Only were considered traces in which a well-developed Rayleigh wave 

train is present, with a very clear dispersion, to ensure the reliability of 

the results of this study (Fig. 2).  Logically, instrumental response must 

be taken to account to avoid the time lag introduced by the 

seismograph system.  This time lag can be appreciated in Figure 2. In 

this Figure we also can see the magnification of short period produced 

after application of the instrument correction. This magnification 
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recovers the true amplitude of this range of period and allow us to 

analyse the short period dispersion with more reliability.  For both 

reasons, all the traces considered in this study were corrected for 

instrument response.  
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Fig. 2.  (a) Observed seismogram corresponding to the vertical component of 

the Rayleigh wave due to the event 16 (as listed in Table 1). This trace was 

recorded at EBR station (as listed in Table 2). (b) The above seismogram 

with instrumental correction. (c) Dispersion curves of both seismograms 

(plotted in (a) and (b)) show the time lag produced by the seismograph 

system. 
 

 

Grouping seismic events in source zones 

Rayleigh waves propagating along very near epicentre-station paths 

show quite similar dispersion curves, because the waves cross the 

same Earth structure and the elastic properties of the medium are also 

the same.  Thus, all seismic events listed in Table 1 were grouped in 

source zones as listed in Table 3.  These source zones are defined as a 

location in which have occurred seismic events with similar epicentre 

coordinates.  The coordinate differences for a group of events in the 

same source zone, must be less than or equal to 0.2 degrees in latitude 

and longitude.  By this procedure, a dispersion curve for each path 

source-station was obtained and it is listed in Table 4, when are 

averaged the dispersion curves obtained analysing each trace of the 

event registered at this station. I obtain also small deviations 

considered as errors that can be described by the standard deviation. 

Figure 3 shows the path coverage of the study area, as a result of the 

above described criteria for grouping of the events. 
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Table 2.  List of WWSSN stations used in this study. 

 
Station code      Latitude (ºN)   Longitude (ºE) 

EBR 40.821 0.493 

MAL 36.728 -4.411 

TOL 39.881 -4.049 

 

 

 

 

Table 3.  List of source zones used in this study. 

    Zone code       Latitude (ºN)    Longitude (ºE) 

S1 36.000 5.200 

S2 35.200 4.500 

S3 38.100 -8.600 

S4 35.700 -0.200 

S5 35.400 -0.200 

S6 36.200 -10.700 

S7 35.800 -9.200 

S8 36.000 -10.300 

S9 36.900 -12.000 

S10 37.100 -14.500 

S11 37.400 -2.300 

S12 36.300 -11.200 

S13 36.000 -2.100 

S14 36.100 4.400 

S15 36.300 5.300 

S16 35.900 4.700 

S17 36.300 -7.000 

S18 35.430 1.096 

S19 36.276 1.288 

S20 36.370 1.640 

S21 35.850 1.220 

S22 35.560 1.310 

S23 36.380 6.710 

S24 36.330 2.600 

S25 36.740 2.480 

S26 36.090 1.520 

S27 35.510 1.204 

S28 39.720 -14.480 

S29 34.800 -5.400 

S30 36.220 1.330 

S31 35.590 1.250 
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Table 4.  List of paths epicentre-station crossing the study area and events 

involved (as listed in Table 1, 2 and 3). 

    Path                     Events 

S1-TOL 1 
S2-TOL 3 

S3-TOL 4 

S4-TOL 5,35 
S5-TOL 6,35 

S6-TOL 7 

S7-TOL 8 

S8-TOL 9 

S9-TOL 10 

S10-TOL 11 
S11-TOL 12 

S12-TOL 13 

S13-TOL 14 
S14-TOL 15,16,17 

S15-TOL 18,19 

S16-TOL 20 
S17-TOL 22 

S18-TOL 23,27,34,38 

S19-TOL 24,25,26,28,29,30,32 
S20-TOL 31,32,36,40 

S21-TOL 33 

S22-TOL 37,38 
S23-TOL 41 

S24-TOL 42 

S25-TOL 43 
S26-TOL 25,30 

S10-EBR 11 

S11-EBR 12 
S14-EBR 15,16,17 

S15-EBR 18,19,21 

S16-EBR 20 
S19-EBR 24,25,26,28,29,30 

S27-EBR 27,37 

S21-EBR 33 
S28-EBR 39 

S25-EBR 43 
S26-EBR 25,30,44 

S1-MAL 1 

S29-MAL 2 
S3-MAL 4 

S4-MAL 5 

S5-MAL 6 
S12-MAL 13 

S15-MAL 18,19 

S30-MAL 25,28,29,30 
S31-MAL 38 

S28-MAL 39 

S23-MAL 41 
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Fig. 3.  Iberian area covered by the Rayleigh waves. 

 

 

Dispersion analysis 

Once the events were grouped was obtained the Rayleigh wave group 

velocity dispersion curves for the trace of each event registered, by 

means of applying digital filtering techniques.  MFT (Multiple Filter 

Technique) and TVF (Time Variable Filtering) were used to obtain the 

group velocity dispersion curve, as it is show in the flow chart 

displayed in Figure 4.  

 

Preprocessed signal

(observed seismogram with instrumental correction)

MFT 

Group velocity

TVF 

Filtered signal MFT Group velocity

(final dispersion curve)

 

Fig. 4.  Steps followed in the filtering process of each event-station seismogram 

to obtain its dispersion curve.  Circles are used to denote the application of a 

digital filtering technique and rectangles are used to denote the results obtained. 

Enhanced rectangles are used to show initial data and final results. 
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Fig. 5.  (a) Observed seismogram corresponding to the event 16 (as listed in Table1) 

recorded at EBR station, instrument corrected. (b) Contour map of relative energy 

normalized to 99 decibels, as a function of period and group time (points denote group 

times inferred from the energy map). (c) Group time curve inferred from the energy 

map. (d) Group velocities calculated from the group times and epicentral distance 

(group velocity is the epicentral distance divided by the group time for each period). 
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Fig. 6.  (a) Observed seismogram corresponding to the event 16 (as listed in Table1) 

recorded at EBR station, instrument corrected. (b) Group velocity dispersion curve obtained 

after application of MFT as it is show in Figure 5. (c) Time-variable filtered seismogram. 
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Fig. 7.  (a) Time-variable filtered seismogram obtained after application of TVF as 

it is show in Figure 6. (b) Contour map of relative energy normalized to 99 

decibels, as a function of period and group time (points denote group times inferred 

from the energy map). (c) Group time curve inferred from the energy map. (d) 

Group velocities calculated from the group times and epicentral distance. 

 

As an example, the filtering process described above was applied to 

the event 16 (as listed in Table 1) corresponding to S14-EBR path. 

This trace was previously corrected of the instrumental effect as it is 

shown in Figure 2; next, I applied MFT (Dziewonski et al., 1969; 

Corchete et al., 1989) to this trace as it is shown in Figure 5. The 

dispersion curve obtained plus this trace are used to obtain the digital 

filtered signal by using TVF (Cara, 1973; Corchete et al., 1989). 

Figure 6 show the time-variable filtered signal as a result of TVF. 

Finally, in Figure 7 we can see the final dispersion curve obtained after 

application of MFT to the filtered signal (as it was showed in the flow 

chart of Figure 4).  

 

A comparison between Figures 5 and 7 indicates that the filtering 

process I propose in this paper (and displayed in Figure 4) works better 

than the application of MFT only. Contour maps of relative energy 

plotted in Figures 5b and 7b, show the improved achieved after 

application of TVF combined with MFT versus the application of MFT 

to the observed seismogram without TVF. Period range has been 
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increased in the group velocity dispersion curve after application of 

MFT to the time-variable filtered signal, versus the application of MFT 

to the observed signal, as it can be seen when we compare Figures 5d 

and 7d.  Dispersion curve obtained after application of MFT only, 

reach to a maximum period of 35 seconds whereas the maximum 

period reached in the dispersion curve showed in Figure 7d is 44 

seconds.  Moreover, the group velocity dispersion curve plotted in 

Figure 5d is not as smooth as this plotted in Figure 7d which is 

determined by the proposal process of filtering (MFT and TVF 

combined). Considering the improvements mention above, this 

filtering process is revealed as a powerful tool for dispersion analysis. 

For this reason, this filtering process is considered today as a standard 

tool for dispersion analysis in long and short period (Badal et al., 1996; 

Chourak et al., 2003). 
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Fig. 8.  (a) Group velocity dispersion curves obtained after application of MFT and 

TVF, following the filtering process displayed in Figure 4 to each trace of the events 

15, 16 and 17 (as listed in Table 1). (b) Path-average dispersion curve for S14-EBR 

path (as listed in Table 4) calculated from the group velocities plotted in Figure 8a. 

Dots denote average group velocity and vertical bars show the standard deviation at 

each period (1- errors). 
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Once all dispersion curves of the traces for the events involved in a 

path were calculated, by means of the filtering process described 

above, was proceed to obtain the group velocity for this path.  In 

Figure 8, we can see as an example the path average dispersion curve 

for S14-EBR path.  For each event involved in this path, was 

calculated previously its dispersion curve, with the above-described 

combination of filtering techniques (MFT and TVF), obtaining after 

the average group velocity as a mean of the group velocity values 

obtained for each period.  An estimation of the error for the average 

group velocity is obtained computing the standard deviation of the 

values involved in the calculation of this media.  In Table 4, some 

paths have only one event involved.  Logically, not all events are well 

registered in all stations; events with a bad trace were discarded in this 

study to ensure the reliability of the results.  In this case, error 

estimation is a mean of the standard deviations obtained for the other 

paths, in which there are more than one event involved. This error is 

already 0.05 km/s for the paths considered in this study.  

 

Following this procedure, was determined a dispersion curve of group 

velocity for each path listed in Table 4, obtaining a set of source-

station averaged dispersion curves with 1- errors (one standard 

deviation).  A set of dispersion curves like this, can be inverted to 

obtain shear wave velocity models as will be describe below, which is 

the goal of the present study joint to a 2D mapping of the elastic 

structure of the South Iberia. 

 

Inversion process 

Was followed the inversion method for surface wave dispersion 

detailed by Badal et al. (1992).  This method was also briefly described 

by Badal et al. (1990), including a flow chart of this inversion process. 

Nevertheless, significance and principal application of the concepts as 

resolving kernels, forward modelling and inverse approach; are 

described with more detail by Badal et al. (1992).  Here, was briefly 

described these concepts to explain how is achieved a shear velocity 

model for a path-average dispersion curve previously obtained, with all 

reliability and accuracy that it is possible to do it.  

 

Selection of an initial model is a previous step before the inversion 

process. In this case, was chosen as initial earth model a mean earth 

model obtained by Corchete et al. (1995) for Iberia. In this model, the 
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Moho discontinuity was changed from 31 km to 17.5 km of depth, 

because theoretical dispersion curve obtained in this way is more 

similar to the path-average dispersion curves, than theoretical curve 

obtained from this model with a Moho discontinuity at 31 km depth. 

This change is necessary due to the inversion scheme selected, in 

which, only are considered small perturbations for the wave velocities 

involved (Badal et al., 1992).   This method conditions the choice of an 

initial model as similar as possible to the true earth structure, 

represented by the path average dispersion curves and all geophysical 

information available for the studied area structure.  The model 

considered here is listed in Table 5 and its shear wave velocity 

distribution with depth is plotted in Figure 9a. Theoretical group 

velocity shown in Figure 9b, is obtained by forward modelling as it is 

described by Aki and Richards (1980).  Once the starting model was 

ready, was proceed to the inversion of each path-average group 

velocity obtained previously, to obtain the shear velocity models for 

each path considered. A program based on the generalized inversion 

theory, which flow chart is showed by Badal et al. (1990), was used.  

In Figure 10 is shown an example of the results of such program. In 

this example, S14-EBR dispersion curve was inverted. Shear velocity 

model shown in Figure 10a, is the final model obtained for this path, 

by means of an iterative process in which model is improved at each 

iteration. The improvement in model iteratively obtained, is checked 

by comparison between group velocity considered as observed data 

(S14-EBR dispersion curve) and theoretical dispersion curve, 

calculated from the actual model by forward modelling. If these curves 

are closer than the previous iteration, the process converges.  When 

theoretical curve falls within the vertical error bars of the observed, as 

can be seen in Figure 10c, inversion process finish, because the shear 

velocity model obtained describes the observed curve within its 

experimental error.  
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Fig. 9.  (a) Shear velocity distribution of the initial model (as listed in Table 5). (b) 

Theoretical group velocity obtained from the initial model listed in Table 5, by 

means of forward modelling. 

 

Resolving kernels showed in Figure 10b indicate the reliability of the 

solution obtained to the inverse problem.  Resolving kernels are row 

vectors of the resolution matrix and therefore a measure of the 

exactness in the solution of the inverse problem (Tarantola 1987).  A 

good agreement between calculated solution and true solution (which 

implies the reliability of the estimated solution), is obtained when the 

absolute maxima of these functions fall over the reference depths. 

These reference depths are defined as the media depth of each layer 

considered in the model.  This reliability is also related to the width of 

these absolute maxima.  The solution achieved to the inversion 

problem is more reliable when the maxima of these resolving kernels 

are narrower.  
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Fig. 10.  (a) Shear wave velocity model obtained after inversion process for S14-

EBR path. Horizontal bars show standard deviation for each layer considered in this 

inversion process (10 layers). (b) Resolving kernels of the inversion problem posed. 

Reference depths are marked by vertical bars for the depth of each layer considered. 

(c) Theoretical group velocity obtained from the final model plotted in Figure 10a, is 

showed with continuous line (labelled as theoretical). Dots line denotes average 

group velocity obtained for S14-EBR path (labelled as observed) and vertical bars 

show the standard deviation at each period (1- errors in the observed data). 

 

To improve the solution reliability the number of layers considered in 

model to the minimum number of layers must be reduced. This is 

necessary to obtain a detailed shear velocity distribution with depth, as 

it is required to satisfy observed dispersion data within its error.  If a 

large number of layers are considered, the number of unknowns is 

increased but the data are the same; as a result, resolution becomes 

worse. This effect is showed by resolving kernels with absolute 

maxima more width and a lack of coincidence between the maxima of 

these functions with the reference depths.   

 

Another method to improve resolution is considering layers with 

thickness that increased with depth as resolution worsen.  This effect 

can be seen in Figure 10b, resolving kernels make worse as depth 

increased. To avoid this effect as is possible, the layer thickness 
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considered in my model increases with depth. Thus, shallow layers are 

thinner than deeper layers, which are thicker.  

 

Shear wave velocity mapping 

Results presented in this paper involved 48 source-station paths in 

which has been calculated the shear velocity distribution with depth. 

All this widespread information is hard to handle for the geophysical 

interpretation without any way of mapping.  For this reason, I have 

interpolated these data to put on a regular grid suitable for plotting 

with contour maps.  Thus, ray paths shown in Figure 3 are converted in 

point data, for this, each path is divided in 9 equidistant points along 

this path, as it is shown in Figure 11. I have cheeked the mapping with 

adding more points by path, but mapping have not changed 

significantly.  Once the ray paths have been assigned to points, I have 

point data of shear velocities  for  each  layer  considered in the 1-D 

shear velocity models.  Then,  I  can  interpolate  these point data for 

each layer obtaining a regular data grid for each reference depth. Later 

I can proceed to map with contours these gridded data obtaining a 2-D 

image of shear velocity, for each reference depth. Such 2-D images 

can be more easily interpreted and correlated with geophysical and 

geological information, available for the study area.  
 

 

 

 
  

Fig. 11.  Distribution of shear velocity data available for later interpolation in 

a regular grid.   

 

 

I have used the MICROCAL software package (© 2002 

MICROCAL
TM

 Software, Inc.) for the computation of this regular data 

grid from the point data velocities, distributed as it is show in Figure 

10b.  This software package is based on a kriging routine that follows 
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the kriging method described by Davis (1986). A measure of guarantee 

and reliability of this interpolation is checked testing the gridded data 

values, by means of comparison between the input values and the 

output values predicted by this interpolation.  For each reference depth, 

interpolation process is finished with a computation of standard 

deviation of the differences between the input and predicted values. 

After this interpolation process, is obtained the gridded data for each 

reference depth. The gridded data are distributed for study area in a 

100x30 regular grid with a mesh size of 0.2º x 0.2º and 3000 points. 

  

Figure 12 show the results of such interpolation process mapped with 

contours, for all reference depths less than or equals to 46 km. I have 

not considered depths deeper than 46 km, because resolution of these 

depths is poor, as it can be seen in Figure10b; therefore, the results 

obtained to these depths can be considered doubtful. 
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Fig. 12.  Shear velocity mapping obtained from the source-station shear 

velocities after interpolation by kriging. On the left upper corner of the plates, 

are showed the reference depths. On the right upper corner, are showed the 

standard deviations obtained for these reference depths. 

 

 

CONCLUSIONS 

Results presented in this paper show the techniques used here as a 

powerful tool to investigate the structure of crust and upper mantle, 

through dispersion analysis and shear velocity mapping. By means of 

these techniques are revealed the principal structural features of the 
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South Iberia and surroundings zones.  Such features are the existence 

of lateral and vertical heterogeneity in whole study area, as it is 

concluded when we can see Figure 12; in which, I show a general 

picture of lithospheric structure from 1.5 to 46 km.  In general, the old 

geological formations of the Iberia show a greater shear velocity than 

the younger formations. Also it is appreciated that higher velocity 

values appear in the zones with more shallow Moho depth.  This effect 

can be seen easily, if a Moho depth mapping is carry out to the study 

zone.  To do this, I have taken for each point of regular grid defined in 

previous section, the depth in which shear velocity is greater than 4.0 km/s, 

constructing a matrix of Moho depths that can be plotted later. This 

matrix plotted with contours in Figure 13a. Figures 13b, 13c and 13d; 

show profiles in several directions that allow appreciating the different 

ways to make thin of crust. In general, continental crust has a media 

thickness of 31 km, while marine crust is thinner with a media 

thickness of 15 km. Some degree of heterogeneity also can be 

appreciated also in Moho depths distribution.  
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Fig. 13.  (a) Moho depth mapping obtained from the shear velocity grids 

plotted in Figure 12. (b) Vertical cut of the Moho discontinuity from A to B, 

along the path plotted in Figure 13a. (c) Vertical cut of the Moho discontinuity 

from A to C. (d) Vertical cut of the Moho discontinuity from D to C. 
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