Modelación del flujo de microplásticos y la interacción de contaminantes químicos orgánicos en sistemas acuáticos

Autores/as

  • Peter Leonel Vera Bravo Universidad Técnica de Manabí, Instituto de Postgrado, Programa de Maestría de Ingeniería Química. Portoviejo, Manabí, Ecuador. http://orcid.org/0000-0003-0264-1728
  • Rosa Alexandra Córdova-Mosquera Universidad Técnica de Manabí; Facultad de Ciencias Matemáticas, Físicas y Químicas; Departamento de Procesos Químicos, Alimentos y Biotecnología. Portoviejo, Manabí, Ecuador.
  • Ernesto Alonso Rosero Delgado Universidad Técnica de Manabí; Facultad de Ciencias Matemáticas, Físicas y Químicas; Departamento de Procesos Químicos, Alimentos y Biotecnología. Portoviejo, Manabí, Ecuador. http://orcid.org/0000-0001-8878-8522

Palabras clave:

Enfoques de modelos, partículas, persistencia, gradiente de concentración, contaminantes orgánicos persistentes

Resumen

Los microplásticos son uno de los principales contaminantes del ambiente. Estos pueden transportarse entre diferentes medios acuáticos y actúan como captadores de contaminantes orgánicos persistentes altamente nocivos. El presente artículo aborda la revisión sistemática de la literatura sobre la modelación del flujo de microplásticos y la interacción de contaminantes químicos orgánicos presentes en sistemas acuáticos. Se analizaron producciones científicas, en su mayoría, dentro del período de 2012 a 2020. Se evidenció que muchos enfoques de modelos desarrollados para otros tipos de partículas se aplican también al flujo de los microplásticos en el medioambiente. Sin embargo, la alta persistencia, baja densidad y diversidad de tamaños extremadamente amplia de los plásticos, hacen que el comportamiento del sistema muestre una variedad mucho más extensa. Por otra parte, se considera que la presencia de microplásticos puede limpiar o contaminar un sistema u organismo, dependiendo del gradiente de concentración entre el microplástico y la matriz, ya sea un tejido o un sistema acuoso. Los modelos de simulación han demostrado ser útiles para analizar mecánicamente estas consideraciones. No obstante, la información encontrada sobre la validación de tales modelos es limitada y adicional se requiere trabajo experimental para enfatizar adecuadamente las variables involucradas, considerando la diversidad de organismos y productos químicos que interaccionan en los ecosistemas involucrados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akbay, ?., & Özdemir, T. (2016). Monomer migration and degradation of polycarbonate via UV-C irradiation within aquatic and atmospheric environments. Journal of Macromolecular Science, Part A, 53(6), 340-345. https://doi.org/10.1080/10601325.2016.1165999
Atteia, O. (1998). Evolution of size distributions of natural particles during aggregation: modelling versus field results. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 139(2), 171-188. https://doi.org/10.1016/S0927-7757(98)00279-9
Besseling, E., Quik, J. T., Sun, M., & Koelmans, A. A. (2017). Fate of nano-and microplastic in freshwater systems: A modeling study. Environmental Pollution, 220, 540-548. https://doi.org/10.1016/j.envpol.2016.10.001
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental science & technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a
Burd, A. B., & Jackson, G. A. (2009). Particle aggregation. Annual review of marine science, 1, 65-90. https://doi.org/10.1146/annurev.marine.010908.163904
Campoy, P., & Beiras, R. (2019). Revisión: Efectos ecológicos de macro-, meso-y microplásticos. Environmental Monitoring and Assessment, 189(11), 581.
Castañeta, G., Gutiérrez, A. F., Nacaratte, F., & Manzano, C. A. (2020). Microplastics: a contaminant that grows in all environmental areas, its characteristics and possible risks to public health from exposure. Revista Boliviana de Química, 37, 142-157. https://doi.org/10.34098/2078-3949.37.3.4
Condor, E., Villasante, Y., Riva, A., Panduro, G., & Cruz, A. (2019). Impacto de la ingesta de residuos plásticos en peces. Revista Kawsaypacha: Sociedad y Medio Ambiente (4), 79-92. https://doi.org/10.18800/kawsaypacha.201902.004
Critchell, K., & Lambrechts, J. (2016). Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuarine, Coastal and Shelf Science, 171, 111-122. https://doi.org/10.1016/j.ecss.2016.01.036
Farley, K. J., & Morel, F. M. (1986). Role of coagulation in the kinetics of sedimentation. Environmental Science & Technology, 20(2), 187-195. https://doi.org/10.1021/es00144a014
Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., . . . Romano, D. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30, 13. https://doi.org/10.1186/s12302-018-0139-z
Gouin, T., Roche, N., Lohmann, R., & Hodges, G. (2011). A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environmental Science & Technology, 45(4), 1466-1472. https://doi.org/10.1021/es1032025
Groh, K. J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P. A., Lennquist, A., . . . Trasande, L. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Science of the Total Environment, 651, 3253-3268. https://doi.org/10.1016/j.scitotenv.2018.10.015
Hammer, J., Kraak, M. H., & Parsons, J. R. (2012). Plastics in the marine environment: the dark side of a modern gift. Reviews of Environmental Contamination and Toxicology, 220, 1-44. https://doi.org/10.1007/978-1-4614-3414-6_1
Hendriks, A. J., van der Linde, A., Cornelissen, G., & Sijm, D. T. (2001). The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol?water partition ratio and species weight. Environmental Toxicology and Chemistry: An International Journal, 20(7), 1399-1420.
Iñiguez, M. E., Conesa, J. A., & Fullana, A. (2017). Pollutant content in marine debris and characterization by thermal decomposition. Marine Pollution Bulletin, 117(1-2), 359-365. https://doi.org/10.1016/j.marpolbul.2017.02.022
Isobe, A., Kubo, K., Tamura, Y., Nakashima, E., & Fujii, N. (2014). Selective transport of microplastics and mesoplastics by drifting in coastal waters. Marine Pollution Bulletin, 89(1-2), 324-330. https://doi.org/10.1016/j.marpolbul.2014.09.041
Iwasaki, S., Isobe, A., Kako, S. i., Uchida, K., & Tokai, T. (2017). Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan. Marine Pollution Bulletin, 121(1-2), 85-96. https://doi.org/10.1016/j.marpolbul.2017.05.057
Karami, A., Golieskardi, A., Choo, C., Larat, V., Galloway, T., & Salamatinia, B. (2017). The presence of microplastics in commercial salts from different countries. Scientific Reports, 7, 46173. https://doi.org/10.1038/srep46173
Koelmans, A. A., Besseling, E., & Foekema, E. M. (2014). Leaching of plastic additives to marine organisms. Environmental Pollution, 187, 49-54. https://doi.org/10.1016/j.envpol.2013.12.013
Koelmans, A. A., Besseling, E., Wegner, A., & Foekema, E. M. (2013). Plastic as a carrier of POPs to aquatic organisms: a model analysis. Environmental Science & Technology, 47(14), 7812-7820. https://doi.org/10.1021/es401169n
Kooi, M., Besseling, E., Kroeze, C., Van Wezel, A. P., & Koelmans, A. A. (2018). Modeling the fate and transport of plastic debris in freshwaters: review and guidance. In: Wagner, M., Lambert, S. (eds) Freshwater Microplastics. The Handbook of Environmental Chemistry, 58. Springer, Cham. https://doi.org/10.1007/978-3-319-61615-5_7
Kutralam, G., Pérez, F., Elizald, M., & Shruti, V. (2020). Branded milks–Are they immune from microplastics contamination? Science of the Total Environment, 714, 136823. https://doi.org/10.1016/j.scitotenv.2020.136823
Liebezeit, G., & Liebezeit, E. (2013). Non-pollen particulates in honey and sugar. Food Additives & Contaminants: Part A, 30(12), 2136-2140. https://doi.org/10.1080/19440049.2013.843025
Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., & Guo, X. (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393, 122515. http://doi.org/10.1016/j.jhazmat.2020.122515
Maximenko, N., Hafner, J., & Niiler, P. (2012). Pathways of marine debris derived from trajectories of Lagrangian drifters. Marine Pollution Bulletin, 65(1-3), 51-62. https://doi.org/10.1016/j.marpolbul.2011.04.016
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H., Bouwman, A., . . . Van Drecht, G. (2010). Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environmental Modelling & Software, 25(7), 837-853. https://doi.org/10.1016/j.envsoft.2010.01.007
Meesters, J. A., Koelmans, A. A., Quik, J. T., Hendriks, A. J., & van de Meent, D. (2014). Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environmental Science & Technology, 48(10), 5726-5736. https://doi.org/10.1021/es500548h
Murray, F., & Cowie, P. R. (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin, 62(6), 1207-1217. https://doi.org/10.1016/j.marpolbul.2011.03.032
Pastor, C., & Agulló, D. (2019). Presencia de microplásticos en aguas y su potencial impacto en la salud pública. Revista Española de Salud Pública, 93(28), 1-10.
Quik, J. T., de Klein, J. J., & Koelmans, A. A. (2015). Spatially explicit fate modelling of nanomaterials in natural waters. Water Research, 80, 200-208. https://doi.org/10.1016/j.watres.2015.05.025
Ramírez, J. (2018). Plásticos y microplásticos en agua, un problema mundial que afecta nuestros sistemas acuáticos. Ingeniería y Región, 19. https://doi.org/10.25054/22161325.2027
Ramírez, J., Alcañiz, L., Hernández, S., Lincon, E., & Fernández, S. (2019). Minimización de microfibras en ciclo de vida de los productos textiles y en el tratamiento de aguas residuales: Proyecto Fiberclean. Tecnoaqua, 36, 53-57.
Rochman, C. M., Manzano, C., Hentschel, B. T., Simonich, S. L. M., & Hoh, E. (2013). Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environmental Science & Technology, 47(24), 13976-13984. https://doi.org/10.1021/es403605f
Sani-Kast, N., Scheringer, M., Slomberg, D., Labille, J., Praetorius, A., Ollivier, P., & Hungerbühler, K. (2015). Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Science of the Total Environment, 535, 150-159. https://doi.org/10.1016/j.scitotenv.2014.12.025
Sarria, R., & Gallo, J. (2016). La gran problemática ambiental de los residuos plásticos: Microplásticos. Journal de Ciencia e Ingeniería, 8(1), 21-27.
Seitzinger, S., Mayorga, E., Bouwman, A., Kroeze, C., Beusen, A., Billen, G., . . . Garnier, J. (2010). Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 24(4). https://doi.org/10.1029/2009GB003587
Sharma, S., & Chatterjee, S. (2017). Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research, 24(27), 21530-21547. https://doi.org/10.1007/s11356-017-9910-8
Siegfried, M., Koelmans, A. A., Besseling, E., & Kroeze, C. (2017). Export of microplastics from land to sea. A modelling approach. Water Research, 127, 249-257. https://doi.org/10.1016/j.watres.2017.10.011
Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental Science & Technology, 41(22), 7759-7764. https://doi.org/10.1021/es071737s
Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., . . . Yamashita, R. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2027-2045. https://doi.org/10.1098/rstb.2008.0284
Unice, K., Weeber, M., Abramson, M., Reid, R., van Gils, J., Markus, A., . . . Panko, J. (2019a). Characterizing export of land-based microplastics to the estuary-Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Science of the Total Environment, 646, 1639-1649. https://doi.org/10.1016/j.scitotenv.2018.07.368
Unice, K., Weeber, M., Abramson, M., Reid, R., van Gils, J., Markus, A., . . . Panko, J. (2019b). Characterizing export of land-based microplastics to the estuary-Part II: Sensitivity analysis of an integrated geospatial microplastic transport modeling assessment of tire and road wear particles. Science of the Total Environment, 646, 1650-1659. https://doi.org/10.1016/j.scitotenv.2018.08.301
Waller, C., Griffiths, H., Waluda, C., Thorpe, S., Loaiza, I., Moreno, B., . . . Hughes, K. (2017). Microplastics in the Antarctic marine system: an emerging area of research. Science of the Total Environment, 598, 220-227. https://doi.org/10.1016/j.scitotenv.2017.03.283
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178, 483-492. https://doi.org/10.1016/j.envpol.2013.02.031
Zhang, H. (2017). Transport of microplastics in coastal seas. Estuarine, Coastal and Shelf Science, 199, 74-86. https://doi.org/10.1016/j.ecss.2017.09.032
Zhao, S., Zhu, L., Wang, T., & Li, D. (2014). Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Marine Pollution Bulletin, 86(1-2), 562-568. https://doi.org/10.1016/j.marpolbul.2014.06.032

Descargas

Publicado

2022-07-28

Cómo citar

Vera Bravo, P. L., Córdova-Mosquera, R. A., & Rosero Delgado, E. A. (2022). Modelación del flujo de microplásticos y la interacción de contaminantes químicos orgánicos en sistemas acuáticos. Revista Colón Ciencias, Tecnologia Y Negocios, 9(2), 69–91. Recuperado a partir de https://revistas.up.ac.pa/index.php/revista_colon_ctn/article/view/3107