Stress is defined as the link mechanism between a stressor agent and its target organ, resulting in a psychophysiological response, characterized by glucocorticoid release. In this study, we review the main effects of stress on the nervous and endocrine systems, as well as the relationship between stress and diet. When experiencing a stressful event, an increase in the corticotropin releasing factor is generated in the hypothalamus, which upon reaching the anterior lobe of the pituitary promotes the secretion of adrenocorticotropic hormone, the latter will finally act on the adrenal gland cortex, inducing glucocorticoids release. The hypothalamic-pituitary-adrenocortical axis, when stimulated by stressful events, causes the increase in of glucocorticoids that promote food intake, particularly high-calorie foods. This intake turns out to be used by individuals as a way of coping with stress and finally inducing obesity.
Downloads
Download data is not yet available.
References
Chrousos GP, Gold PW. The Concepts of Stress and Stress System Disorders: Overview of Physical and Behavioral Homeostasis. J Am Med Assoc. 1992;267(9):1244–52.
Habib KE, Gold PW, Chrousos GP. Neuroendocrinology of Stress. Endocrinol Metab Clin North Am. 2001;30:695–728.
McEwen BS. The neurobiology of stress: From serendipity to clinical relevance. Brain Res Interact. 2000;886(1–2):172–89.
Selye H. The general adaption syndrome and the diseases of adaption. J Clin Endocrinol Metab. 1949;6:117–230.
Selye H. Stress and disease. Science (80-). 1955;(122):625–31.
Selye H. A syndrome produced by diverse Nocuous agents. Nature. 1936;138:32.
Selye H. Thymus and adrenals in the response of the organism to injuries and intoxication. Br JExp Pathol. 1936;17:234–48.
Seaward BL. Physiology of Stress. In: Managing Stress, principles and strategies and well-being. 2013. p. 53.
Everly G, Lating JM. The Anatomy and Physiology of the Human Stress Response. In: A Clinical Guide to the Treatment of the Human Stress Response. 2013. p. 17–51.
McEwen BS. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol Rev. 2007;87:873–904.
Chrousos G. Stressors, Stress, and neuroendocrine integration of adaptive response. Ann N Y Acad Sci. 1997;851:311–55.
VollmerR. Selective neural regulation of epinephrine and norepinephrine cells in the adrenal medulla --cardiovascular implications . Clin Experimenntal Hypertens. 1996;18(6):731–51.
Tsapatsaris N, Breslin D. Physiology of the adrenal medulla . Urol Clin North Am. 1989;16(3):439–45.
Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, et al. Role of brain norepinephrine in the behavioral response to stress. 2005;29:1214–24.
Bose M, Olivan B, Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2010;16(5):1–12.
Del Hoyo Delgado MA. Estrés laboral. In: Instituto Nacional de Seguridad e Higiene en el Trabajo. Instituto. Servicio de Ediciones y PublicacionesI.N.S.H.T. Madrid; 2001. p. 25–7.
Szado S. Hans Selye and theDevelopment o the Stress concept. Ann N Y Acad Sci. 1998;851:19–27.
Cremaschi GA, Gorelik G, Klecha AJ, Lysionek AE, Genaro AM. Chronic stress influences the immune system through the thyroid axis. Life Sci. 2000;67(26):3171–9.
Helmreich DL, Tylee D. Thyroid hormone regulation by stress and behavioral differences in adult male rats. Horm Behav [Internet]. 2011;60(3):284–91. Disponible en: http://dx.doi.org/10.1016/j.yhbeh.2011.06.003
Antoni FA. Vasopressin as a Stress Hormone. Stress Neuroendocrinol Neurobiol. 2017;2(December):97–108.
Bautista LE, Bajwa PK, Shafer MM, Malecki KMC, McWilliams CA, Palloni A. The relationship between chronic stress, hair cortisol and hypertension. Int J Cardiol Hypertens [Internet]. 2019;2(April):1–4. Disponible en: https://doi.org/10.1016/j.ijchy.2019.100012
Morton JJ, Padfield PL. Vasopressin and Hypertension in Man. J Cardiovasc Pharmacol. 1986;8(7):101–6.
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55–89.
Mariotti A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication. Futur Sci OA. 2015;1(3).
Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. Vol. 16, EXCLI Journal. Leibniz Research Centre for Working Environment and Human Factors; 2017. p. 1057–72.
Lau T, Bigio B, Zelli D, McEwen B, Nasca C. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Mol Psychiatry [Internet]. 2017;22(2):227–34. Disponible en: http://dx.doi.org/10.1038/mp.2016.6835. McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology [Internet]. 2016;41(1):3–23. Disponible en: http://dx.doi.org/10.1038/npp.2015.17136. Conrad CD. Chronic Stress-Induced Hippocampal Vulnerability: The Glucocorticoid Vulnerability Hypothesis. Rev Neurosci. 2008;19(6):395–411. 37. Gagnon SA, Wagner AD. Acute stress and episodic memory retrieval: Neurobiological mechanisms and behavioral consequences. Ann N Y Acad Sci. 2016;1369(1):55–75. 38. De Kloet ER, Joëls M, Holsboer F. Stress and the brain: From adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75. 39. Coluccia D, Wolf OT, Kollias S, Roozendaal B, Forster A, De Quervain DJF. Glucocorticoid therapy-induced memory deficits: Acute versus chronic effects. J Neurosci. 2008;28(13):3474–8. 40. Buchanan TW, Lovallo WR. Enhanced memory for emotional material following stress- level cortisol treatment in humans. Psychoneuroendocrinology. 2001;26(3):307–17. 41. Payne JD, Jackson ED, Hoscheidt S, Ryan L, Jacobs WJ, Nadel L. Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learn Mem. 2007;14(12):861–8. 42. Jelicic M, Geraerts E, Merckelbach H, Guerrieri R. Acute stress enhances memory for emotional words, but impairs memory for neutral words. Int J Neurosci. 2004;114(10):1343–51. 43. Dolcos F, LaBar KS, Cabeza R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron. 2004;42(5):855–63. 44. Kilpatrick L, Cahill L. Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage. 2003;20(4):2091–9. 45. Ritchey M, Dolcos F, Cabeza R. Role of amygdala connectivity in the persistence of emotional memories over time: An event-related fMRI investigation. Cereb Cortex. 2008;18(11):2494–504. 46. McGaugh JL. The Amygdala Modulates the Consolidation of Memories of Emotionally Arousing Experiences. Annu Rev Neurosci. 2004;27(1):1–28. 47. Kirschbaum C, Wolf OT, Wippich W, Hellhammer DH. Stress-and treatmnet-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996;58(17):1475–83. 48. Cahill L, Gorski L, Le K. Enhanced human memory consolidation with post-learning stress: Interaction with the degree of arousal at encoding. Learn Mem. 2003;10(4):270–4. 49. Smeets T, Otgaar H, Candel I, Wolf OT. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology. 2008;33(10):1378–86. 50. McCullough AM, Ritchey M, Ranganath C, Yonelinas A. Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory. Neurobiol Learn Mem [Internet]. 2015;123(April):1–10. Disponible en: http://dx.doi.org/10.1016/j.nlm.2015.04.00751. Andreano JM, Cahill L. Glucocorticoid release and memory consolidation in men and women. Psychol Sci. 2006;17(6):466–70. 52. Tomiyama AJ. Stress and Obesity. Annu Rev. 2018;(June 2018):1–16. 53. Lovallo W, Thomas T. Stress hormones in psychophysiological research: Emotional, behavioral, andcognitive implications. Cambridge UCUP, editor. In Handbook of Psychophysiology. 2000. 342–367 p. 54. Tataranni P, Larson D, Snitker S, Young J, Flatt J, Ravussin E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am J Physiol. 1996;271(2):E317-25. 55. Epel ES, Lapidus R, Mc Ewen BS, Brownell K. Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology. 2001;26(1):37–49. 56. J ?equier E. Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci. 2002;967:379–88. 57. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes Rev. 2007;8(1):21–34. 58. Berridge KC, Ho CY, Richard JM, Difeliceantonio AG. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders.
Vol. 1350, Brain Research. 2010. p. 43–64. 59. Carrasco GA, Van De Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003;463(1–3):235–72. 60. Sinha R, Jastreboff A. Stress as a common risk factor for obesity and addiction. Biol Psychiatry. 2013;73:8:27–35. 61. Després J, Lemieux I, Prud ?homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. Br Med J. 2001;322(7288):716–20. 62. Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2011;21(3):159–65. 63. Langhans W, Geary N. Overview of the Physiological Control of Eating. In: Frontiers in Eating and Weight Regulation. 2010. p. 9–53. 64. Sominsky L, Spencer SJ. Eating behavior and stress : a pathway to obesity. Front Psychol. 2014;5(May):1–8. 65. Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci U S A [Internet]. 2003;100(20):11696–701. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12975524%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC208820