IMANES DE MOLÉCULA ÚNICA:

HACIA APLICACIONES TECNOLÓGICAS

Autores/as

  • Concepción Molina-Jirón Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Bioquímica, Panamá.
  • Eufemio Moreno-Pineda Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany. 6Sistema Nacional de Investigadores (SNI), SENACYT, Panamá.
  • Lester Batista Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Física, Panamá.
  • Juan A. Jaén Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Química-Física, Panamá.
  • Wolfgang Wernsdorfer Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany. Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.

Palabras clave:

Sensores cuánticos, simulaciones cuánticas, computación cuántica, transistor de espín, válvula de espín, bit cuántico, corrección cuántica de errores, tunelamiento cuántico de la magnetización

Resumen

La utilización de los efectos cuánticos puede influir en gran medida en el funcionamiento de los dispositivos tecnológicos. Hasta la fecha, los conocimientos adquiridos sobre la naturaleza cuántica de varios sistemas han impulsado la propuesta de varias aplicaciones tecnológicas futuristas, como sensores cuánticos, la simulación y la computación cuánticas. Los imanes de molécula única (SMM, por sus siglas en inglés) representan una clase de objetos cuánticos con propiedades prometedoras para ser explotados en las tecnologías cuánticas. Hoy en día, se ha demostrado que los SMMs poseen efectos cuánticos desconcertantes, como la tunelización cuántica de la magnetización (QTM, por sus siglas en inglés), la cuantización de los estados de energía, coherencia, efectos de paridad de espín y el entrelazamiento, entre otros. Además, se han integrado con éxito en dispositivos espintrónicos híbridos de una sola molécula, como los transistores y las válvulas de espín, lo que ha propiciado una amplia investigación de aplicaciones tecnológicas. En este artículo de revisión, se describen algunos aspectos cuánticos clave que hacen de los SMMs sistemas prometedores para propuestas tecnológicas. Además, se describen los dispositivos de una sola molécula, en los que los SMMs se han integrado como dispositivos híbridos, así como las aplicaciones tecnológicas, como sensores cuánticos, la simulación y la computación cuánticas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aasi, J., Abadie, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., … Zweizig, J.(2013). Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 7(8), 613–619. https://doi.org/10.1038/nphoton.2013.177

Aguilà, D., Barrios, L. A., Velasco, V., Roubeau, O., Repollés, A., Alonso, P. J., … Aromí, G. (2014). Heterodimetallic [LnLn’] lanthanide complexes: Toward a chemical design of two-qubit molecular spin quantum gates. Journal of the American Chemical Society, 136(40), 14215–14222. https://doi.org/10.1021/ja507809w

Albino, A., Benci, S., Tesi, L., Atzori, M., Torre, R., Sanvito, S., … Lunghi, A. (2019). First-Principles Investigation of Spin-Phonon Coupling in Vanadium-Based Molecular Spin Quantum Bits. Inorganic Chemistry, 58(15), 10260–10268. https://doi.org/10.1021/acs.inorgchem.9b01407]

Aromí, G., Aguilà, D., Gamez, P., Luis, F., & Roubeau, O. (2012). Design of magnetic coordination complexes for quantum computing. Chemical Society Reviews, 41(2), 537–546. https://doi.org/10.1039/c1cs15115k

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., … Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5

Atzori, M., Benci, S., Morra, E., Tesi, L., Chiesa, M., Torre, R., … Sessoli, R. (2018a). Structural Effects on the Spin Dynamics of Potential Molecular Qubits. Inorganic Chemistry, 57(2), 731–740. https://doi.org/10.1021/acs.inorgchem.7b02616

Atzori, M., Chiesa, A., Morra, E., Chiesa, M., Sorace, L., Carretta, S., … Sessoli, R. (2018b). A two-qubit molecular architecture for electron-mediated nuclear quantum simulation. Chemical Science, 9(29), 6183–6192. https://doi.org/10.1039/c8sc01695j

Atzori, M., Morra, E., Tesi, L., Albino, A., Chiesa, M., Sorace, L., & Sessoli, R. (2016a). Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: The Key Role of the Vanadyl Moiety. Journal of the American Chemical Society, 138(35), 11234–11244. https://doi.org/10.1021/jacs.6b05574

Atzori, M., & Sessoli, R. (2019). The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. Journal of the American Chemical Society, 141(29), 11339–11352. https://doi.org/10.1021/jacs.9b00984

Atzori, M., Tesi, L., Benci, S., Lunghi, A., Righini, R., Taschin, A., … Sessoli, R. (2017). Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits. Journal of the American Chemical Society, 139(12), 4338–4341. https://doi.org/10.1021/jacs.7b01266

Atzori, M., Tesi, L., Morra, E., Chiesa, M., Sorace, L., & Sessoli, R. (2016b). Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. Journal of the American Chemical Society, 138(7), 2154–2157. https://doi.org/10.1021/jacs.5b13408

Bader, K., Dengler, D., Lenz, S., Endeward, B., Jiang, S. Da, Neugebauer, P., & Van Slageren, J. (2014). Room temperature quantum coherence in a potential molecular qubit. Nature Communications, 5(1), 5304. https://doi.org/10.1038/ncomms6304

Bae, Y., Yang, K., Willke, P., Choi, T., Heinrich, A. J., & Lutz, C. P. (2018). Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions. Science Advances, 4(11), eaau4159. https://doi.org/10.1126/sciadv.aau4159

Balakrishnan, S. (2014). Various Constructions of Qudit SWAP Gate. Physics Research International, 2014, 1–5. https://doi.org/10.1155/2014/479320

Barco, E. del, Hernandez, J., Tejada, J., Biskup, N., Achey, R., Rutel, I., … Brooks, J. (2000). High-frequency resonant experiments in molecular clusters. Physical Review B - Condensed Matter and Materials Physics, 62(5), 3018–3021. https://doi.org/10.1103/PhysRevB.62.3018

Barry, J. F., Turner, M. J., Schloss, J. M., Glenn, D. R., Song, Y., Lukin, M. D., …Walsworth, R. L. (2016). Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. PNAS,113(49),14133–14138.https://doi.org/10.1073/pnas.1601513113

Bertaina, S., Gambarelli, S., Mitra, T., Tsukerblat, B., Müller, A., & Barbara, B. (2008). Quantum oscillations in a molecular magnet. Nature, 453(7192), 203–206. https://doi.org/10.1038/nature06962

Biard, H., Moreno-Pineda, E., Ruben, M., Bonet, E., Wernsdorfer, W., & Balestro, F. (2021). Increasing the Hilbert space dimension using a single coupled molecular spin. Nature Communications, 12(1), 4443. https://doi.org/10.1038/s41467-021-24693-6

Bogani, L., & Wernsdorfer, W. (2008). Molecular spintronics using single-molecule magnets. Nature Materials, 7(3), 179–186. https://doi.org/10.1038/nmat2133

Boss, J. M., Cujia, K. S., Zopes, J., & Degen, C. L. (2017). Quantum sensing with arbitrary frequency resolution. Science, 356(6340), 837–840. https://doi.org/10.1126/science.aam7009

Briganti, M., Santanni, F., Tesi, L., Totti, F., Sessoli, R., & Lunghi, A. (2021). A Complete Ab Initio View of Orbach and Raman Spin–Lattice Relaxation in a Dysprosium Coordination Compound. Journal of the American Chemical Society, 143(34), 13633–13645. https://doi.org/10.1021/jacs.1c05068

Bruce, D. W., O’hare, D., & Walton, R. I. (n.d.). Molecular Materials (Inorganic Materials Series). Candini, A., Lorusso, G., Troiani, F., Ghirri, A., Carretta, S., Santini, P., … Affronte, M. (2010). Entanglement in supramolecular spin systems of two weakly coupled antiferromagnetic rings (purple-Cr7Ni). Physical Review Letters, 104(3), 037203. https://doi.org/10.1103/PhysRevLett.104.037203

Carretta, S., Santini, P., Amoretti, G., Guidi, T., Copley, J. R. D., Qiu, Y., … Winpenny, R. E. P. (2007). Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: Evidence from neutron spectroscopy. Physical Review Letters, 98(16), 167401. https://doi.org/10.1103/PhysRevLett.98.167401

Chen, Y. C., Liu, J. L., Ungur, L., Liu, J., Li, Q. W., Wang, L. F., … Tong, M. L. (2016). Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Journal of the American Chemical Society, 138(8), 2829–2837. https://doi.org/10.1021/jacs.5b13584

Chen, Z., Molina-Jirón, C., Klyatskaya, S., Klappenberger, F., & Ruben, M. (2017). 1D and 2D Graphdiynes: Recent Advances on the Synthesis at Interfaces and Potential Nanotechnological Applications. Annalen Der Physik, 529(11), 1–20. https://doi.org/10.1002/andp.201700056

Chiesa, A., Macaluso, E., Petiziol, F., Wimberger, S., Santini, P., & Carretta, S. (2020). Molecular Nanomagnets as Qubits with Embedded Quantum-Error Correction. The Journal of Physical Chemistry Letters, 11(20), 8610–8615. https://doi.org/10.1021/acs.jpclett.0c02213

Chiesa, Alessandro, Santini, P., & Carretta, S. (2016). Supramolecular Complexes for Quantum Simulation. Magnetochemistry, 2(4), 37. https://doi.org/10.3390/magnetochemistry2040037

Chiesa, A., Whitehead, G. F. S., Carretta, S., Carthy, L., Timco, G. A., Teat, S. J., … Santini, P. (2014). Molecular nanomagnets with switchable coupling for quantum simulation. Scientific Reports, 4(1), 7423. https://doi.org/10.1038/srep07423

Christou, G. (1993). Manganese carboxylate aggregates of biological relevance. Journal of Inorganic Biochemistry, 51(1–2), 445. https://doi.org/10.1016/0162-0134(93)85473-L

Cooper, A., Sun, W. K. C., Jaskula, J. C., & Cappellaro, P. (2020). Identification and Control of Electron-Nuclear Spin Defects in Diamond. Physical Review Letters, 124(8), 83602. https://doi.org/10.1103/PhysRevLett.124.083602

Coronado, E. (2020). Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nature Reviews Materials, 5(2), 87–104. https://doi.org/10.1038/s41578-019-0146-8

Crippa, L., Tacchino, F., Chizzini, M., Aita, A., Grossi, M., Chiesa, A., … Carretta, S. (2021). Simulating Static and Dynamic Properties of Magnetic Molecules with Prototype Quantum Computers. Magnetochemistry, 7(8), 117. https://doi.org/10.3390/magnetochemistry7080117

Degen, C. L., Reinhard, F., & Cappellaro, P. (2017). Quantum sensing. Reviews of Modern Physics, 89(3), 035002. https://doi.org/10.1103/RevModPhys.89.035002

DiVincenzo, D. P. (2000). The physical implementation of quantum computation. Fortschritte Der Physik, 48(9–11), 771–783. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-ROP771>3.0.CO;2-E

Dovzhenko, Y., Casola, F., Schlotter, S., Zhou, T. X., Büttner, F., Walsworth, R. L., … Yacoby, A. (2018). Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications, 9(1), 2712. https://doi.org/10.1038/s41467-018-05158-9

Dowling, J. P., & Milburn, G. J. (2003). Quantum technology: The second quantum revolution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 361(1809), 1655–1674. https://doi.org/10.1098/rsta.2003.1227

Fataftah, M. S., Zadrozny, J. M., Coste, S. C., Graham, M. J., Rogers, D. M., & Freedman, D. E. (2016). Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex. Journal of the American Chemical Society, 138(4), 1344–1348. https://doi.org/10.1021/jacs.5b11802

Fernandez, A., Moreno Pineda, E., Muryn, C. A., Sproules, S., Moro, F., Timco, G. A., … Winpenny, R. E. P. (2015). G-Engineering in Hybrid Rotaxanes to Create AB and AB2 Electron Spin Systems: EPR Spectroscopic Studies of Weak Interactions between Dissimilar Electron Spin Qubits. Angewandte Chemie - International Edition, 54(37), 10858–10861. https://doi.org/10.1002/anie.201504487

Ferrando-Soria, J., Fernandez, A., Moreno Pineda, E., Varey, S. A., Adams, R. W., Vitorica-Yrezabal, I. J., … Winpenny, R. E. P. (2015). Controlled Synthesis of Nanoscopic Metal Cages. Journal of the American Chemical Society, 137(24), 7644–7647. https://doi.org/10.1021/jacs.5b04664

Ferrando-Soria, J., Magee, S. A., Chiesa, A., Carretta, S., Santini, P., Vitorica-Yrezabal, I. J., … Winpenny, R. E. P. (2016a). Switchable Interaction in Molecular Double Qubits. Chem, 1(5), 727–752. https://doi.org/10.1016/j.chempr.2016.10.001

Ferrando-Soria, J., Moreno Pineda, E., Chiesa, A., Fernandez, A., Magee, S. A., Carretta, S., … Winpenny, R. E. P. (2016b). A modular design of molecular qubits to implement universal quantum gates. Nature Communications, 7, 11377. https://doi.org/10.1038/ncomms11377

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6–7), 467–488. https://doi.org/10.1007/BF02650179

Gaita-Ariño, A., Luis, F., Hill, S., & Coronado, E. (2019). Molecular spins for quantum computation. Nature Chemistry, 11(4), 301–309. https://doi.org/10.1038/s41557-019-0232-y

Ganzhorn, M., Klyatskaya, S., Ruben, M., & Wernsdorfer, W. (2013). Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nature Nanotechnology, 8(3), 165–169. https://doi.org/10.1038/nnano.2012.258

Ganzhorn, M., Klyatskaya, S., Ruben, M., & Wernsdorfer, W. (2016). Quantum Einstein-de Haas effect. Nature Communications, 7(1), 11443. https://doi.org/10.1038/ncomms11443

García-Pérez, G., Rossi, M. A. C., & Maniscalco, S. (2020). IBM Q Experience as a versatile experimental testbed for simulating open quantum systems. Npj Quantum Information, 6(1), 1. https://doi.org/10.1038/s41534-019-0235-y

Garlatti, E., Guidi, T., Ansbro, S., Santini, P., Amoretti, G., Ollivier, J., … Carretta, S. (2017). Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering. Nature Communications, 8(1), 14543. https://doi.org/10.1038/ncomms14543

Gatteschi, D., & Sessoli, R. (2003). Quantum tunneling of magnetization and related phenomena in molecular materials. Angewandte Chemie - International Edition, 42(3), 268–297. https://doi.org/10.1002/anie.200390099

Gedik, Z., Silva, I. A., Çakmak, B., Karpat, G., Vidoto, E. L. G., Soares-Pinto, D. O., … Fanchini, F. F. (2015). Computational speed-up with a single qudit. Scientific Reports, 5(1), 14671. https://doi.org/10.1038/srep14671

Godfrin, C., Ferhat, A., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., & Balestro, F. (2017). Operating Quantum States in Single Magnetic Molecules: Implementation of Grover’s Quantum Algorithm. Physical Review Letters, 119(18), 187702. https://doi.org/10.1103/PhysRevLett.119.187702

Godfrin, C., Lumetti, S., Biard, H., Bonet, E., Klyatskaya, S., Ruben, M., … Balestro, F. (2019). Microwave-assisted reversal of a single electron spin. Journal of Applied Physics, 125(14). https://doi.org/10.1063/1.5064593

Godfrin, Clément, Ballou, R., Bonet, E., Ruben, M., Klyatskaya, S., Wernsdorfer, W., & Balestro, F. (2018). Generalized Ramsey interferometry explored with a single nuclear spin qudit. Npj Quantum Information, 4(1), 53. https://doi.org/10.1038/s41534-018-0101-3

Godfrin, Clément, Thiele, S., Ferhat, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W., & Balestro, F. (2017). Electrical Read-Out of a Single Spin Using an Exchange-Coupled Quantum Dot. ACS Nano, 11(4), 3984–3989. https://doi.org/10.1021/acsnano.7b00451

Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F., & Mills, D. P. (2017). Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature, 548(7668), 439–442. https://doi.org/10.1038/nature23447

Gottesman, D. (1999). Fault-tolerant quantum computation with higher-dimensional systems. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 1509, pp. 302–313). https://doi.org/10.1007/3-540-49208-9_27

Gould, C. A., McClain, K. R., Reta, D., Kragskow, J. G. C., Marchiori, D. A., Lachman, E., … Long, J. R. (2022). Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science, 375(6577), 198–202. https://doi.org/10.1126/science.abl5470

Graham, M. J., Krzyaniak, M. D., Wasielewski, M. R., & Freedman, D. E. (2017). Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes. Inorganic Chemistry, 56(14), 8106–8113. https://doi.org/10.1021/acs.inorgchem.7b00794

Graham, M. J., Zadrozny, J. M., Fataftah, M. S., & Freedman, D. E. (2017). Forging Solid-State Qubit Design Principles in a Molecular Furnace. Chemistry of Materials, 29(5), 1885–1897. https://doi.org/10.1021/acs.chemmater.6b05433

Graham, M. J., Zadrozny, J. M., Shiddiq, M., Anderson, J. S., Fataftah, M. S., Hill, S., & Freedman, D. E. (2014). Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes. Journal of the American Chemical Society, 136(21), 7623–7626. https://doi.org/10.1021/ja5037397

Grover, L. K. (1997). Quantum Mechanics Helps in Searching for a Needle in a Haystack. Physical Review Letters, 79(2), 325–328. https://doi.org/10.1103/PhysRevLett.79.325

Guo, F. S., Day, B. M., Chen, Y. C., Tong, M. L., Mansikkamäki, A., & Layfield, R. A. (2018). Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science, 362(6421), 1400–1403. https://doi.org/10.1126/science.aav0652

Heersche, H. B., De Groot, Z., Folk, J. A., Van Der Zant, H. S. J., Romeike, C., Wegewijs, M. R., … Cornia, A. (2006). Electron transport through single Mn12 molecular magnets. Physical Review Letters, 96(20), 206801. https://doi.org/10.1103/PhysRevLett.96.206801

Hill, S. (2003). Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets. Science, 302(5647), 1015–1018. https://doi.org/10.1126/science.1090082

Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y., & Kaizu, Y. (2003a). Lanthanide double-decker complexes functioning as magnets at the single-molecular level. Journal of the American Chemical Society, 125(29), 8694–8695. https://doi.org/10.1021/ja029629n

Ishikawa, N., Sugita, M., Okubo, T., Tanaka, N., Iino, T., & Kaizu, Y. (2003b). Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorganic Chemistry, 42(7), 2440–2446. https://doi.org/10.1021/ic026295u

Ishikawa, N., Sugita, M., & Wernsdorfer, W. (2005). Quantum tunneling of magnetization in lanthanide single-molecule magnets: Bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angewandte Chemie - International Edition, 44(19), 2931–2935. https://doi.org/10.1002/anie.200462638

Jenkins, A., Pelliccione, M., Yu, G., Ma, X., Li, X., Wang, K. L., & Jayich, A. C. B. (2019). Single-spin sensing of domain-wall structure and dynamics in a thin-film skyrmion host. Physical Review Materials, 3(8), 83801. https://doi.org/10.1103/PhysRevMaterials.3.083801

Jenkins, M. D., Duan, Y., Diosdado, B., García-Ripoll, J. J., Gaita-Ariño, A., Giménez-Saiz, C., … Luis, F. (2017). Coherent manipulation of three-qubit states in a molecular single-ion magnet. Physical Review B, 95(6), 064423. https://doi.org/10.1103/PhysRevB.95.064423

Kelly, J., Barends, R., Fowler, A. G., Megrant, A., Jeffrey, E., White, T. C., … Martinis, J. M. (2015). State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541), 66–69. https://doi.org/10.1038/nature14270

Kiktenko, E. O., Fedorov, A. K., Man’ko, O. V., & Man’ko, V. I. (2015a). Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities. Physical Review A, 91(4), 042312. https://doi.org/10.1103/PhysRevA.91.042312

Kiktenko, E. O., Fedorov, A. K., Strakhov, A. A., & Man’Ko, V. I. (2015b). Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(22–23), 1409–1413. https://doi.org/10.1016/j.physleta.2015.03.023

Kim, D., Ibrahim, M. I., Foy, C., Trusheim, M. E., Han, R., & Englund, D. R. (2019). A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nature Electronics, 2(7), 284–289. https://doi.org/10.1038/s41928-019-0275-5

Kragskow, J. G. C., Marbey, J., Buch, C. D., Nehrkorn, J., Ozerov, M., Piligkos, S., … Chilton, N. F. (2022). Analysis of vibronic coupling in a 4f molecular magnet with FIRMS. Nature Communications, 13(1), 825. https://doi.org/10.1038/s41467-022-28352-2

Kues, M., Reimer, C., Roztocki, P., Cortés, L. R., Sciara, S., Wetzel, B., … Morandotti, R. (2017). On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546(7660), 622–626. https://doi.org/10.1038/nature22986

Lawrie, B. J., Lett, P. D., Marino, A. M., & Pooser, R. C. (2019). Quantum Sensing with Squeezed Light. ACS Photonics, 6(6), 1307–1318. https://doi.org/10.1021/acsphotonics.9b00250

Lee-Wong, E., Xue, R., Ye, F., Kreisel, A., Van Der Sar, T., Yacoby, A., & Du, C. R. (2020). Nanoscale detection of magnon excitations with variable wavevectors through a quantum spin sensor. Nano Letters, 20(5), 3284–3290. https://doi.org/10.1021/acs.nanolett.0c00085

Leuenberger, M. N., & Loss, D. (2001). Quantum computing in molecular magnets. Nature, 410(6830), 789–793. https://doi.org/10.1038/35071024

Lloyd, S. (1993). A potentially realizable quantum computer. Science, 261(5128), 1569–1571. https://doi.org/10.1126/science.261.5128.1569

Lockyer, S. J., Chiesa, A., Timco, G. A., McInnes, E. J. L., Bennett, T. S., Vitorica-Yrezebal, I. J., … Winpenny, R. E. P. (2021). Targeting molecular quantum memory with embedded error correction. Chemical Science, 12(26), 9104–9113. https://doi.org/10.1039/d1sc01506k

Lorusso, G., Troiani, F., Bellini, V., Ghirri, A., Candini, A., Carretta, S., … Affronte, M. (2011). Spin entanglement in supramolecular systems. Journal of Physics: Conference Series, 303(1), 012033. https://doi.org/10.1088/1742-6596/303/1/012033

Lovchinsky, I., Sushkov, A. O., Urbach, E., de Leon, N. P., Choi, S., De Greve, K., … Lukin, M. D. (2016). Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science, 351(6275), 836–841. https://doi.org/10.1126/science.aad8022

Luis, F., Repollés, A., Martínez-Pérez, M. J., Aguilà, D., Roubeau, O., Zueco, D., … Aromí, G. (2011). Molecular prototypes for spin-based CNOT and SWAP quantum gates. Physical Review Letters, 107(11), 117203. https://doi.org/10.1103/PhysRevLett.107.117203

Luo, M., & Wang, X. (2014). Universal quantum computation with qudits. Science China: Physics, Mechanics and Astronomy, 57(9), 1712–1717. https://doi.org/10.1007/s11433-014-5551-9

Macaluso, E., Rubín, M., Aguilà, D., Chiesa, A., Barrios, L. A., Martínez, J. I., … Carretta, S. (2020). A heterometallic [LnLn?Ln] lanthanide complex as a qubit with embedded quantum error correction. Chemical Science, 11(38), 10337–10343. https://doi.org/10.1039/D0SC03107K

Martínez-Pérez, M. J., Cardona-Serra, S., Schlegel, C., Moro, F., Alonso, P. J., Prima-García, H., … Luis, F. (2012). Gd-based single-ion magnets with tunable magnetic anisotropy: Molecular design of spin qubits. Physical Review Letters, 108(24), 247213. https://doi.org/10.1103/PhysRevLett.108.247213

Milburn, G. J. (2009). Photons as qubits. Physica Scripta T, T137, 014003. https://doi.org/10.1088/0031-8949/2009/T137/014003

Mirzoyan, R., & Hadt, R. G. (2020). The dynamic ligand field of a molecular qubit: Decoherence through spin-phonon coupling. Physical Chemistry Chemical Physics, 22(20), 11249–11265. https://doi.org/10.1039/d0cp00852d

Mohammadi, M., Niknafs, A., & Eshghi, M. (2011). Controlled gates for multi-level quantum computation. Quantum Information Processing,10(2), 241–256. https://doi.org/10.1007/s11128-010-0192-z

Molina-Jirón, C., Chellali, M. R., Kumar, C. N. S., Kübel, C., Velasco, L., Hahn, H., … Ruben, M. (2019). Direct Conversion of CO2 to Multi-Layer Graphene using Cu–Pd Alloys. ChemSusChem, 12(15), 3509–3514. https://doi.org/10.1002/cssc.201901404

Montanaro, A. (2016). Quantum algorithms: An overview. Npj Quantum Information, 2(1), 15023. https://doi.org/10.1038/npjqi.2015.23

Moreno-Pineda, E., Damjanovi?, M., Fuhr, O., Wernsdorfer, W., & Ruben, M. (2017). Nuclear Spin Isomers: Engineering a Et4N[DyPc2] Spin Qudit. Angewandte Chemie - International Edition, 56(33), 9915–9919. https://doi.org/10.1002/anie.201706181

Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W., & Ruben, M. (2018). Molecular spin qudits for quantum algorithms. Chemical Society Reviews, 47(2), 501–513. https://doi.org/10.1039/c5cs00933b

Moreno-Pineda, E., Klyatskaya, S., Du, P., Damjanovi?, M., Taran, G., Wernsdorfer, W., & Ruben, M. (2018). Observation of Cooperative Electronic Quantum Tunneling: Increasing Accessible Nuclear States in a Molecular Qudit. Inorganic Chemistry, 57(16), 9873–9879. https://doi.org/10.1021/acs.inorgchem.8b00823

Moreno-Pineda, E., & Wernsdorfer, W. (2021). Measuring molecular magnets for quantum technologies. Nature Reviews Physics, 3(9), 645–659. https://doi.org/10.1038/s42254-021-00340-3

Moreno Pineda, E., Komeda, T., Katoh, K., Yamashita, M., & Ruben, M. (2016). Surface confinement of TbPc2-SMMs: structural, electronic and magnetic properties. Dalton Transactions, 45(46), 18417–18433. https://doi.org/10.1039/c6dt03298b

Morley, G. W. (2014). Chapter 3. Towards spintronic quantum technologies with dopants in silicon (pp. 62–76). https://doi.org/10.1039/9781782620280-00062

Nakazawa, S., Nishida, S., Ise, T., Yoshino, T., Mori, N., Rahimi, R. D., … Takui, T. (2012). A synthetic two-spin quantum bit: G-engineered exchange-coupled biradical designed for controlled-NOT gate operations. Angewandte Chemie - International Edition, 51(39), 9860–9864. https://doi.org/10.1002/anie.201204489 s

Neeley, M., Ansmann, M., Bialczak, R. C., Hofheinz, M., Lucero, E., O’Connell, A. D., … Martinis, J. M. (2009). Emulation of a quantum spin with a superconducting phase qudit. Science, 325(5941), 722–725. https://doi.org/10.1126/science.1173440

Neves, L., Lima, G., Gómez, J. G. A., Monken, C. H., Saavedra, C., & Pádua, S. (2005). Generation of entangled states of qudits using twin photons. Physical Review Letters, 94(10), 100501. https://doi.org/10.1103/PhysRevLett.94.100501

Nielsen, M. A., & Chuang, I. L. (2012). Quantum Computation and Quantum Information. Cambridge University Press, CambridgePhysics, Englad. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667

Nossa, J. F., Islam, M. F., Canali, C. M., & Pederson, M. R. (2013). Electric control of a {Fe4} single-molecule magnet in a single-electron transistor. Physical Review B - Condensed Matter and Materials Physics, 88(22), 224423. https://doi.org/10.1103/PhysRevB.88.224423

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., … Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896

O’Leary, D. P., Brennen, G. K., & Bullock, S. S. (2006). Parallelism for quantum computation with qudits. Physical Review A - Atomic, Molecular, and Optical Physics, 74(3), 032334. https://doi.org/10.1103/PhysRevA.74.032334

Ohshima, T., Satoh, T., Kraus, H., Astakhov, G. V., Dyakonov, V., & Baranov, P. G. (2018). Creation of silicon vacancy in silicon carbide by proton beam writing toward quantum sensing applications. J. Phys. D: Appl. Phys. 51(33). https://doi.org/10.1088/1361-6463/aad0ec

Otterbach, J. S., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., … Rigetti, C. (2017). Unsupervised Machine Learning on a Hybrid Quantum Computer. arXiv:1712.05771. https://doi.org/10.48550/arXiv.1712.05771

Panajotov, K. P., Arizaleta, M., Gomez, V., Koltys, K., Tabaka, A., Sciamanna, M., … Thienpont, H. (2004). Semiconductor lasers for quantum sensing. In Proceedings Quantum Sensing and Nanophotonic Devices, 5359(360). https://doi.org/10.1117/12.518317

Pedersen, K. S., Ariciu, A. M., McAdams, S., Weihe, H., Bendix, J., Tuna, F., & Piligkos, S. (2016). Toward molecular 4f single-ion magnet qubits. Journal of the American Chemical Society, 138(18), 5801–5804. https://doi.org/10.1021/jacs.6b02702

Popov, A., Kiktenko, E., Fedorov, A., & Man’ko, V. I. (2016). Information Processing Using Three-Qubit and Qubit–Qutrit Encodings of Noncomposite Quantum Systems. Journal of Russian Laser Research, 37(6), 581–590. https://doi.org/10.1007/s10946-016-9610-8

Radu, V., Price, J. C., Levett, S. J., Narayanasamy, K. K., Bateman-Price, T. D., Wilson, P. B., & Mather, M. L. (2020). Dynamic Quantum Sensing of Paramagnetic Species Using Nitrogen-Vacancy Centers in Diamond. ACS Sensors, 5(3), 703–710. https://doi.org/10.1021/acssensors.9b01903

Ralph, T. C., Resch, K. J., & Gilchrist, A. (2007). Efficient Toffoli gates using qudits. Physical Review A - Atomic, Molecular, and Optical Physics, 75(2), 022313. https://doi.org/10.1103/PhysRevA.75.022313

Richart, D., Fischer, Y., & Weinfurter, H. (2012). Experimental implementation of higher dimensional time-energy entanglement. Applied Physics B: Lasers and Optics, 106(3), 543–550. https://doi.org/10.1007/s00340-011-4854-z

Rungta, P., Munro, W. J., Nemoto, K., Deuar, P., Milburn, G. J., & Caves, C. M. (2007). Qudit Entanglement. Directions in Quantum Optics, (1), 149–164. https://doi.org/10.1007/3-540-40894-0_14

Sangregorio, C., Ohm, T., Paulsen, C., Sessoli, R., & Gatteschi, D. (1997). Quantum Tunneling of the Magnetization in an Iron Cluster Nanomagnet. Physical Review Letters, 78(24), 4645–4648. https://doi.org/10.1103/PhysRevLett.78.4645

Santanni, F., Albino, A., Atzori, M., Ranieri, D., Salvadori, E., Chiesa, M., … Sessoli, R. (2021). Probing Vibrational Symmetry Effects and Nuclear Spin Economy Principles in Molecular Spin Qubits. Inorg. Chem., 60(1), 140–151. https://doi.org/10.1021/acs.inorgchem.0c02573

Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen Der Physik, 385(13), 437–490. https://doi.org/10.1002/andp.19263851302

Sessoli, R., Gatteschi, D., Caneschi, A., & Novak, M. A. (1993). Magnetic bistability in a metal-ion cluster. Nature, 365(6442), 141–143. https://doi.org/10.1038/365141a0

Shi, F., Zhang, Q., Wang, P., Sun, H., Wang, J., Rong, X., … Du, J. (2015). Single-protein spin resonance spectroscopy under ambient conditions. Science, 347(6226), 1135–1138. https://www.science.org/doi/10.1126/science.aaa2253

Shiddiq, M., Komijani, D., Duan, Y., Gaita-Ariño, A., Coronado, E., & Hill, S. (2016). Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature, 531(7594), 348–351. https://doi.org/10.1038/nature16984

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–1509. https://doi.org/10.1137/S0097539795293172

Stepanenko, D., Trif, M., & Loss, D. (2008). Quantum computing with molecular magnets. Inorganica Chimica Acta, 361(14–15), 3740–3745. https://doi.org/10.1016/j.ica.2008.02.066

Sugisaki, K., Nakazawa, S., Toyota, K., Sato, K., Shiomi, D., & Takui, T. (2019). Quantum chemistry on quantum computers: Quantum simulations of the time evolution of wave functions under the S 2 operator and determination of the spin quantum number: S. Phys. Chem. Chem. Phys., 21(28), 15356–15361. https://doi.org/10.1039/c9cp02546d

Sun, Y., & Rogers, J. A. (2007). Inorganic semiconductors for flexible electronics. Advanced Materials, 19(15), 1897–1916. https://doi.org/10.1002/adma.200602223

Tacchino, F., Chiesa, A., Sessoli, R., Tavernelli, I., & Carretta, S. (2021). A proposal for using molecular spin qudits as quantum simulators of light-matter interactions. Journal of Materials Chemistry C, 9(32), 10266–10275. https://doi.org/10.1039/d1tc00851j

Taran, G., Bonet, E., & Wernsdorfer, W. (2019). The role of the quadrupolar interaction in the tunneling dynamics of lanthanide molecular magnets. Journal of Applied Physics, 125(14), 142903. https://doi.org/10.1063/1.5079453

Tesi, L., Lucaccini, E., Cimatti, I., Perfetti, M., Mannini, M., Atzori, M., … Sessoli, R. (2016). Quantum coherence in a processable vanadyl complex: New tools for the search of molecular spin qubits. Chemical Science, 7(3), 2074–2083. https://doi.org/10.1039/c5sc04295j

Thiele, S., Vincent, R., Holzmann, M., Klyatskaya, S., Ruben, M., Balestro, F., & Wernsdorfer, W. (2013). Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Physical Review Letters, 111(3), 037203. https://doi.org/10.1103/PhysRevLett.111.037203

Thiele, Stefan, Balestro, F., Ballou, R., Klyatskaya, S., Ruben, M., & Wernsdorfer, W. (2014). Electrically driven nuclear spin resonance in single-molecule magnets. Science, 344(6188), 1135–1138. https://doi.org/10.1126/science.1249802

Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., & Barbara, B. (1996). Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature, 383(6596), 145–147. https://doi.org/10.1038/383145a0

Timco, G. A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R. J., Muryn, C. A., … Winpenny, R. E. P. (2009). Engineering the coupling between molecular spin qubits by coordination chemistry. Nature Nanotechnology, 4(3), 173–178. https://doi.org/10.1038/nnano.2008.404

Troiani, F., Carretta, S., & Santini, P. (2013). Detection of entanglement between collective spins. Physical Review B - Condensed Matter and Materials Physics, 88(19), 195421. https://doi.org/10.1103/PhysRevB.88.195421

Troiani, F., Ghirri, A., Affronte, M., Carretta, S., Santini, P., Amoretti, G., … Winpenny, R. E. P. (2005). Molecular engineering of antiferromagnetic rings for quantum computation. Physical Review Letters, 94(20), 207208. https://doi.org/10.1103/PhysRevLett.94.207208

Troiani, F., Ghirri, A., Paris, M. G. A., Bonizzoni, C., & Affronte, M. (2019). Towards quantum sensing with molecular spins. Journal of Magnetism and Magnetic Materials, 491, 165534. https://doi.org/10.1016/j.jmmm.2019.165534

Urdampilleta, M., Klyatskaya, S., Cleuziou, J. P., Ruben, M., & Wernsdorfer, W. (2011). Supramolecular spin valves. Nature Materials, 10(7), 502–506. https://doi.org/10.1038/nmat3050

Urdampilleta, M., Klyatskaya, S., Ruben, M., & Wernsdorfer, W. (2013). Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin. Physical Review B, 87(19), 195412. https://doi.org/10.1103/PhysRevB.87.195412

Urdampilleta, M., Klayatskaya, S., Ruben, M., & Wernsdorfer, W. (2015). Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve. ACS Nano, 9(4), 4458–4464. https://doi.org/10.1021/acsnano.5b01056

Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., & Balestro, F. (2012). Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature, 488(7411), 357–360. https://doi.org/10.1038/nature11341

Wasielewski, M. R., Forbes, M. D. E., Frank, N. L., Kowalski, K., Scholes, G. D., Yuen-Zhou, J., … Whaley, K. B. (2020). Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 4(9), 490–504. https://doi.org/10.1038/s41570-020-0200-5

Watson, T. F., Philips, S. G. J., Kawakami, E., Ward, D. R., Scarlino, P., Veldhorst, M., … Vandersypen, L. M. K. (2018). A programmable two-qubit quantum processor in silicon. Nature, 555(7698), 633–637. https://doi.org/10.1038/nature25766

Wedge, C. J., Timco, G. A., Spielberg, E. T., George, R. E., Tuna, F., Rigby, S., … Ardavan, A. (2012). Chemical Engineering of Molecular Qubits. Physical Review Letters, 108(10), 107204. https://doi.org/10.1103/PhysRevLett.108.107204

Wernsdorfer, W., Soler, M., Christou, G., & Hendrickson, D. N. (2002). Quantum phase interference (Berry phase) in single-molecule magnets of [Mn12]2-. Journal of Applied Physics, 91(10 I), 7164–7166. https://doi.org/10.1063/1.1450788

Wiesendanger, R., G?ntherodt, H. J., G?ntherodt, G., Gambino, R. J., & Ruf, R. (1990). Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Physical Review Letters, 65(2), 247–250. https://doi.org/10.1103/PhysRevLett.65.247

Wiesendanger, Roland. (2009). Spin mapping at the nanoscale and atomic scale. Reviews of Modern Physics, 81(4), 1495–1550. https://doi.org/10.1103/RevModPhys.81.1495

Willke, P., Bae, Y., Yang, K., Lado, J. L., Ferrón, A., Choi, T., … Lutz, C. P. (2018). Hyperfine interaction of individual atoms on a surface. Science, 362(6412), 336–339. https://doi.org/10.1126/science.aat7047

Willke, P., Paul, W., Natterer, F. D., Yang, K., Bae, Y., Choi, T., … Lutz, C. P. (2018). Probing quantum coherence in single-atom electron spin resonance. Science Advances, 4(2), eaaq1543. https://doi.org/10.1126/sciadv.aaq1543

Willke, P., Singha, A., Zhang, X., Esat, T., Lutz, C. P., Heinrich, A. J., & Choi, T. (2019a). Tuning Single-Atom Electron Spin Resonance in a Vector Magnetic Field. Nano Letters, 19(11), 8201–8206. https://doi.org/10.1021/acs.nanolett.9b03559

Willke, P., Yang, K., Bae, Y., Heinrich, A. J., & Lutz, C. P. (2019b). Magnetic resonance imaging of single atoms on a surface. Nature Physics,15(10),1005–1010. https://doi.org/10.1038/s41567-019-0573-x

Xiang, Q., Cheng, B., & Yu, J. (2015). Graphene-Based Photocatalysts for Solar-Fuel Generation. Angewandte Chemie - International Edition, 54(39), 11350–11366. https://doi.org/10.1002/anie.201411096

Yang, J., Wang, Y., Wang, Z., Rong, X., Duan, C. K., Su, J. H., & Du, J. (2012). Observing quantum oscillation of ground states in single molecular magnet. Physical Review Letters, 108(23), 230501. https://doi.org/10.1103/PhysRevLett.108.230501

Yang, K., Bae, Y., Paul, W., Natterer, F. D., Willke, P., Lado, J. L., … Lutz, C. P. (2017). Engineering the Eigenstates of Coupled Spin- 1/2 Atoms on a Surface. Physical Review Letters, 119(22), 227206. https://doi.org/10.1103/PhysRevLett.119.227206

Yang, K., Paul, W., Phark, S. H., Willke, P., Bae, Y., Choi, T., … Lutz, C. P. (2019). Coherent spin manipulation of individual atoms on a surface. Science, 366(6464), 509–512. https://doi.org/10.1126/science.aay6779

Yu, C. J., Graham, M. J., Zadrozny, J. M., Niklas, J., Krzyaniak, M. D., Wasielewski, M. R., … Freedman, D. E. (2016). Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. Journal of the American Chemical Society, 138(44), 14678–14685. https://doi.org/10.1021/jacs.6b08467

Yu, C. J., Von Kugelgen, S., Laorenza, D. W., & Freedman, D. E. (2021). A Molecular Approach to Quantum Sensing. ACS Central Science, 7(5), 712–723. https://doi.org/10.1021/acscentsci.0c00737

Zadrozny, J. M., Niklas, J., Poluektov, O. G., & Freedman, D. E. (2014). Multiple quantum coherences from hyperfine transitions in a vanadium(IV) complex. Journal of the American Chemical Society, 136(45), 15841–15844. https://doi.org/10.1021/ja507846k

Zadrozny, J. M., Niklas, J., Poluektov, O. G., & Freedman, D. E. (2015). Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Central Science, 1(9), 488–492. https://doi.org/10.1021/acscentsci.5b00338

Zhang, Y., Zhang, L., & Zhou, C. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46(10), 2329–2339. https://doi.org/10.1021/ar300203n

Descargas

Publicado

2023-01-25

Cómo citar

Molina-Jirón, C., Moreno-Pineda, E., Batista, L., Jaén, J. A. y Wernsdorfer, W. (2023) «IMANES DE MOLÉCULA ÚNICA: : HACIA APLICACIONES TECNOLÓGICAS», Tecnociencia, 25(1), pp. 132–179. Disponible en: https://revistas.up.ac.pa/index.php/tecnociencia/article/view/3442 (Accedido: 24 marzo 2023).

Número

Sección

Artículos