References
Arienzo, M., Sánchez-Camazano, M., Sánchez-Martín, M., y Crisanto, T. (1994). Influence of exogenous organic matter in the mobility of diazinon in soils. Chemosphere, 29(6), 1245–1252. https://doi.org/10.1016/0045-6535(94)90255-0
Badii, M. H., y Varela, S. (2015). Insecticidas Organofosforados: Efectos sobre la Salud y el Ambiente. Cultura Científica Y Tecnológica, (28). Recuperado a partir de https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/375
Castro, J., Sánchez-Brunete, C., y Tadeo, J. (2001). Multiresidue analysis of insecticides in soil by gas chromatography with electron–capture detection and confirmation by gas chromatography–mass spectrometry. Journal of Chromatography A, 918(2), 371–380. https://doi.org/10.1016/s0021-9673(01)00751-8
Colborn, T., Dumanoski, D., y Myers, J. P. (1997). Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival?--A
Scientific Detective Story (First Printing ed.). Plume.
?Olovi?, M., Krsti?, D., Petrovi?, S., Leskovac, A., Joksi?, G., Savi?, J., Franko, M., Trebše, P., y Vasi?, V. (2010). Toxic effects of diazinon and its photodegradation products. Toxicology Letters, 193(1), 9–18. https://doi.org/10.1016/j.toxlet.2009.11.022
Edwards, G. A., Bergren, A. J., y Porter, M. D. (2007). Chemically Modified Electrodes. Handbook of Electrochemistry, 295–327. https://doi.org/10.1016/b978-044451958-0.50021-5
Eisler, R. (2000). Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals, Three Volume Set (1st ed.). CRC Press.
El-Gendy, K., Mosallam, E., Ahmed, N., y Aly, N. (2018). Determination of glyphosate residues in Egyptian soil samples. Analytical Biochemistry, 557, 1–6. https://doi.org/10.1016/j.ab.2018.07.004
Erdo?du, G. (2003). A sensitive voltametric method for the determination of Diazinon Insecticide. Journal of Analytical Chemistry, 58(6), 569–572. https://doi.org/10.1023/a:1024120320359
Espinosa J. (1984). Plaguicidas. Revista Miscelánea, 3, 10-20.
Gamez, M. J. (2022, May 24). Objetivos y metas de desarrollo sostenible. Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/
Garcia J. (1999). Análisis preliminar del uso de plaguicidas en la Cuenca del Río Tempisque. Revista Acta Académica, Universidad Autónoma de Centro América, 25, 51-62.
Glavan, G., Kos, M., Boži?, J., Drobne, D., Saboti?, J., y Kokalj, A. J. (2018). Different response of acetylcholinesterases in salt- and detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 205, 8–14. https://doi.org/10.1016/j.cbpc.2017.12.004
Gulaboski, R., Ferreira, E. S., Pereira, C. M., Cordeiro, M. N. D. S., Garau, A., Lippolis, V., y Silva, A. F. (2007). Coupling of Cyclic Voltammetry and Electrochemical Impedance Spectroscopy for Probing the Thermodynamics of Facilitated Ion Transfer Reactions Exhibiting Chemical Kinetic Hindrances. The Journal of Physical Chemistry C, 112(1), 153–161. https://doi.org/10.1021/jp076203s
Guziejewski, D., Skrzypek, S., y Ciesielski, W. (2011). Square wave adsorptive stripping voltammetric determination of diazinon in its insecticidal formulations. Environmental Monitoring and Assessment, 184(11), 6575–6582. https://doi.org/10.1007/s10661-011-2442-7
Koryta, J., Dvorak, J., y Kavan, L. (1993). Principles of Electrochemistry (2nd ed.). Wiley.
Lazarevi?-Pašti, T. D., Bondži?, A. M., Pašti, I. A., Mentus, S. V., & Vasi?, V. M. (2013). Electrochemical oxidation of diazinon in aqueous solutions via electrogenerated halogens – Diazinon fate and implications for its detection. Journal of Electroanalytical Chemistry, 692, 40–45. https://doi.org/10.1016/j.jelechem.2013.01.005
Li, M., Li, Y. T., Li, D. W., y Long, Y. T. (2012). Recent developments and applications of screen-printed electrodes in environmental assays—A review. Analytica Chimica Acta, 734, 31–44. https://doi.org/10.1016/j.aca.2012.05.018
Liu, Y., Song, C., Li, Y., Liu, Y., y Song, J. (2011). The distribution of organochlorine pesticides (OCPs) in surface sediments of Bohai Sea Bay, China. Environmental Monitoring and Assessment, 184(4), 1921–1927. https://doi.org/10.1007/s10661-011-2089-4
Lourenço AS, Sanches FA, Magalhães RR, Costa DJ, Ribeiro WF, Bichinho KM, Salazar-Banda GR, y Araújo MC. 2014. Electrochemical oxidation and electroanalytical determination of xylitol at a boron-doped diamond electrode. Talanta. Feb; 119:509-16. doi: 10.1016/j.talanta.2013.11.030.
Mason, B. (1992). Preparation of soil sampling protocols: Sampling techniques and strategies. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-92/128.
https://nepis.epa.gov/Exe/ZyNET.exe/30003W4E.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000005%5C30003W4E.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0& ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
Matsumura, F. (1985). Effects of Pesticides on Wildlife. Toxicology of Insecticides, 437–487. https://doi.org/10.1007/978-1-4613-2491-1_10
Mercado, L. A., Freille, S. M., Vaca-Pereira, J. S., Cuellar, M., Flores, L., Mutch, E., Olea, N., y Arrebola, J. P. (2013). Serum concentrations of p,p?-dichlorodiphenyltrichloroethane (p,p?-DDE) in a sample of agricultural workers from Bolivia. Chemosphere, 91(10), 1381–1385. https://doi.org/10.1016/j.chemosphere.2012.12.023
Miller, I., y Werber, M. (1979). Cyclic voltammetry of two Fe-ferredoxins from Halobacterium of the Dead Sea. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 100(1–2), 103–110. https://doi.org/10.1016/s0022-0728(79)80154-0
Molieri J., (1995). Plaguicidas, Salud y Desarrollo Sostenible en Centroamérica. Los Desafíos de la Salud Ambiental. Cuadernos de la Representación OPS/OMS En Panamá (3, 1-76) Panamá: OPS/OMS.
Moreno Fr??As, M., Garrido Frenich, A., Mart??Nez Vidal, J., Mateu Sánchez, M., Olea, F., y Olea, N. (2001). Analyses of lindane, vinclozolin, aldrin, p,p?-DDE, o,p?-DDT and p,p?-DDT
in human serum using gas chromatography with electron capture detection and tandem mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 760(1), 1–15. https://doi.org/10.1016/s0378-4347(01)00212-2
Narenderan, S., Meyyanathan, S., y Karri, V. V. S. R. (2019). Experimental design in pesticide extraction methods: A review. Food Chemistry, 289, 384–395. https://doi.org/10.1016/j.foodchem.2019.03.045
Pravda, M. (2011). Analytical Methods | Electrochemical Analysis. Encyclopedia of Dairy Sciences, 193–197. https://doi.org/10.1016/b978-0-12-374407-4.00018-2
Ragas, A. M., Oldenkamp, R., Preeker, N., Wernicke, J., y Schlink, U. (2011). Cumulative risk assessment of chemical exposures in urban environments. Environment International, 37(5), 872–881. https://doi.org/10.1016/j.envint.2011.02.015
R?bi?, T., Sobczak, A., Wierzchowski, M., Frankiewicz, A., Te?yk, A., y Milczarek, G. (2018). An approach for electrochemical functionalization of carbon nanotubes/1-amino-9,10-anthraquinone electrode with catechol derivatives for the development of NADH sensors. Electrochimica Acta, 260, 703–715. https://doi.org/10.1016/j.electacta.2017.12.022
Rodríguez J., Lamoth L., (1994). Contaminación de Alimentos de Origen Agrícola con Residuos de Plaguicidas en Panamá. Congreso Latinoamericano de Química (XXI, 1-10) Panamá: Panamá.
Sánchez, J. D. (2015, November). Educación en inocuidad de alimentos: Glosario de términos. Pan American Health Organization / World Health Organization.
https://www3.paho.org/hq/index.php?option=com_content&view=article&id=10433:educacion-inocuidad-alimentos-glosario-terminos-inocuidad-de-alimentos&Itemid=41278&lang=es
Sánchez-Brunete, C., Pérez, R., Miguel, E., y Tadeo, J. (1998). Multiresidue herbicide analysis in soil samples by means of extraction in small columns and gas chromatography with nitrogen–phosphorus and mass spectrometric detection. Journal of Chromatography A, 823(1–2), 17–24. https://doi.org/10.1016/s0021-9673(98)00293-3
Sánchez-Brunete, C., Rodriguez, A., y Tadeo, J. (2003). Multiresidue analysis of carbamate pesticides in soil by sonication-assisted extraction in small columns and liquid chromatography. Journal of Chromatography A, 1007(1–2), 85–91. https://doi.org/10.1016/s0021-9673(03)00953-1
Singh Rathore, H. (2009). Methods of and Problems in Analyzing Pesticide Residues in the Environment. Handbook of Pesticides, 7–46. https://doi.org/10.1201/9781420082470.ch2
Smith, J., Chapman, R., y Frampton, C. (1998). Soil degradation of diazinon and its effect on the emergence of apple leafcurling midge. Proceedings of the New Zealand Plant Protection Conference, 51, 148–151. https://doi.org/10.30843/nzpp.1998.51.11677
Smyth, W. F., y Smyth, M. R. (1987). Electrochemical analysis of organic pollutants. Pure and Applied Chemistry, 59(2), 245–256. https://doi.org/10.1351/pac198759020245
Songa, E. A., y Okonkwo, J. O. (2016). Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta, 155, 289–304. https://doi.org/10.1016/j.talanta.2016.04.046
Strekopytov, S., Brownscombe, W., Lapinee, C., Sykes, D., Spratt, J., Jeffries, T. E., y Jones, C. G. (2017). Arsenic and mercury in bird feathers: Identification and quantification of inorganic pesticide residues in natural history collections using multiple analytical and imaging techniques. Microchemical Journal, 130, 301–309. https://doi.org/10.1016/j.microc.2016.10.009
Turiel, E., Martín-Esteban, A., y Tadeo, J. L. (2006). Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Analytica Chimica Acta, 562(1), 30–35. https://doi.org/10.1016/j.aca.2006.01.054
Tuzimski, T., yRejczak, T. (2016). Application of HPLC–DAD after SPE/QuEChERS with ZrO 2 -based sorbent in d-SPE clean-up step for
pesticide analysis in edible oils. Food Chemistry, 190, 71–79. https://doi.org/10.1016/j.foodchem.2015.05.072
Uhrov?ík, J. (2014). Strategy for determination of LOD and LOQ values – Some basic aspects. Talanta, 119, 178–180. https://doi.org/10.1016/j.talanta.2013.10.061
Volke T., Velasco J., y De la Rosa D., (2005). Suelos contaminados por metales y metaloides. Instituto Nacional de Ecología. Secretaria de Medio Ambiente y Recursos Naturales. México. 1, 144. Volume 37, Issue 5, 2011, Pages 872-881, ISSN 0160-4120.
Welsch, J., Songling, C., Buckley, H. L., Lehto, N. J., Jones, E. E., y Case, B. S. (2019). How many samples? Soil variability affects confidence in the use of common agroecosystem soil indicators. Ecological Indicators, 102, 401–409. https://doi.org/10.1016/j.ecolind.2019.02.065
Wexler, P. (2014). Encyclopedia of Toxicology (3rd ed.). Academic Press.
Workman, Jerome y Mark, H., (2006). Limitations in analytical accuracy, part I: Horwitz's trumpet. Spectroscopy -Springfield then Eugene then Duluth-. 21. 18-24.
Wu, M., Zhang, L., Wang, D., Xiao, C., y Zhang, S. (2008). Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors. Journal of Power Sources, 175(1), 669–674. https://doi.org/10.1016/j.jpowsour.2007.09.062