BIOGAS EN EL CULTIVO DE MICROALGAS: POTENCIAL COMO FUENTE DE DIÓXIDO DE CARBONO EN FOTOBIORREACTORES

Palabras clave: Dióxido de carbono, fotobiorreactor, metano, microalga, pH

Resumen

La masificación del cultivo microalgas en fotobiorreactores requiere de altos volúmenes de dióxido de carbono (CO2), para ser capturado en biomasa de microalgas; y que, aportados por medio de sales químicas, encarecen la producción. Este alto suministro de CO2 al cultivo de microalgas, puede ser aportado por el biogás, debido a su alto porcentaje de CO2 y metano (CH4); que liberados a la atmósfera son gases de efecto invernadero. En este estudio, el biogás se utilizó combustionado para el cultivo de la microalga Nannochloropsis oculata, como fuente alterna de CO2. Esto, con la finalidad de controlar el pH en el cultivo de microalga y aportar carbono. Para ello, se almacenó biogas combustionado y se diluyó a concentraciones de 0,5% y 1,1% de CO2; junto con un testigo de CO2 atmosférico. Los datos se analizaron mediante una prueba T de Student, a un α de 0,05. Según los resultados, se encontró diferencias significativas en el pH, en donde el equilibrio óptimo en la interfaz gas-líquido para N. oculata, se obtuvo a una disolución de 0,5% de CO2, manteniendo un pH de 7,79. En conclusión, el biogas brinda una alternativa económica y ambientalmente viable, para la producción masiva de microalgas en fotobiorreactores.

Descargas

La descarga de datos todavía no está disponible.

Citas

Benson, B. y Krause, D. 1984. The concentration and isotopic fractionation of oxygen Dissolved in freshwater and seawater inequilibrium with the atmosphere. Limnol. Oceanport., 29:3, 620-632

Birmingham, B.; Coleman, J. y Colman, B. 1982. Measurement of photorespiration in algae. Plantae Physiology. 69: 259 – 262.

Chiu S., Kao C., Tsai M., Ong S., Chen C., Lin C. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology 100: 833 – 838.

Copeland H., Pier P., Whitehead S., Enlow P., Strickland R., Behel D., (2003). Chemical fixation of CO2 in coal combustion products and recycling through biosystems. Final Technical Report. Tennessee Valley Authority (TVA).70 pp.

Colt J., Bouck G., (1984). Diseño de columnas de relleno para desgasificar. Acuícola Ingeniería, Vol. 3, Issue 4, Pages 251-273.

Correa, G.; Cuervo, H.; Mejía, R. y Aguirre, N. 2012. Monitoreo del sistema de lagunas de estabilización del municipio de Santa Fé de Antioquia, Colombia. Producción + Limpia 7(2): 36-51.

Doucha J., Straka F., Livansky K., (2005). Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Institute of microbiology, Academy of science of the Czech Republic. Journal of Applied Phycology. 17: 403 - 412.

Duan Z., Sun R., Zhu C., Chou I., (2006). An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl_, and SO42_. Marine Chemistry 98: 131–139

Engel T., Reid P., (2007). Introducción a la fisicoquímica: Termodinámica. Pearson Educación, 584 pág.

Escobar J., (2002). La contaminación de los ríos y sus efectos en las áreas costeras y el mar. División de recursos naturales e infraestructura CEPAL. Publicación de las Naciones Unidas LC/L. 1799-P. 68 pag.

Gladrow W., Riebesell U., (1997). Diffusion and reactions in the vicinity of plankton: A refined model for inorganic carbon transport. Marine Chemistry, Vol. 59, Issue: 1-2, 17-34.

Guillermo O., 2014. Efecto de la intensidad de la luz y de la tasa de inyección de aire en el crecimiento y la productividad de la microalga Nannochloropsis sp., cultivada en un biorreactor plano. Centro de investigación científica y de educación superior de ensenada, baja california Tesis Master. 70 pág.

Hanumantha M. 2002. Application of algal culture technology for carbon dioxide and flue gas emission control.Thesis, Master of Science. Arizona State University 110 pp.

Hernández, M. 2010. Suelos de humedales como sumideros de carbono y fuentes de metano. Terra Latinoamericana 28(2): 139-147.

Hernández-Pérez, A. y Labbé, J. 2014. Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía 49(2): 157-173.

Hu H., & Gao K., (2003). Optimization of growth and fatty acid composition of unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters 25: 421–425.

Huertas E., Montero O., Lubian L., (2000). Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae. Aquacultural Engineering 22:181–197.

Kustka, A.B., Shaked, Y., Milligan, A.J., King, D.W., Morel, F.M.M., (2005). Extracellular production of superoxide by marine diatoms: contrasting effects on iron redox chemistry and bioavailability. Limnology.Oceanografic. 50, 1172–1180.

Kromkamp J., Peen J., (2004). Oxygen consumption in the light by unicellular algae. Netherlands Institute of Ecology, S29-003.6 pp.
Li Y., Markley B., Mohan A., Rodríguez V., Thompson D., Niekerk D., (2006). Utilization of Carbon Dioxide from Coal-Fired Power Plant for the Production of Value-Added.

Merrett M., Nimer, N., Dong L. (1996). The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd.Plant, Cell and Environtnent 19: 478-484.

Milligan A., Mioni C., Morel F., (2009). Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosiraweissflogii. Marine Chemistry, Volume 114, Issues 1-2, 31-36

Millero, F.J. y Roy R.N. (1997). A chemical equilibrium model for the carbonate
System in natural waters, Croatia Chemica Acta, 70: 1-38.

Moheimani N., (2005). The culture of coccolithophorid algae for carbon dioxide bioremediation, Murdoch University Thesis, Division Science & Engineering,252 pp.

Mook W., (2000). Environmental isotopes in the hydrological cycle: Principles and applications. Centre for isotope research Groningen. 271 pag.

Nagase H., Yoshihara K., Eguchi K., Okamoto Y., Murasaki S., Yamashita R., Hirata K., Miyamoto K., (2001). Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Osaka University. Biochemical Engineering Journal 7: 241-246.

Nakamura T., Olaizola M., Bridges T., Flores S., Sombardier L., (2005). Recovery and Sequestration of CO2 from Stationary Combustion systems by Photosynthesis of Microalgae.Physical Sciences Inc., 220 pp.

Ono E., Cuello J., (2003). Selection of optimal microalgae species for CO2 sequestration. Second Annual Conference on Carbon Sequestration. University of Arizona.7 pp.

Otsuki T., (2001). A study for the biological CO fixation and utilization 2 systems. The Science of the Total Environment 277: 21 – 25.

Papazi A., Makridis P., Divanach P., Kotzabasis K., (2008). Bioenergetics changes in the microalga photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiologia Plantarum 132: 338–349.

Sato T., Sato R., (2002). Numerical prediction of the dilution process and its biological impacts in CO2 ocean sequestration. Journal of Marine Science and Technology 6: 169 – 180.

Sheehan J., Dunahay T., Benemann J., Roessler P., (1998). A look back at the U.S. department of energy´s aquatic species program – biodiesel from algae.U.S. Department of energy´s office of fuels development. 323 pag.

Spolaore P. Joannis C., Duran E. Isambert A.,(2006). Optimization of Nannochloropsis oculata Growth Using the Response Surface Method. Journal of Chemical Technology and Biothechnology.81:1049 – 1056.

Stepan D., Shockey R., Moe T., Dorn R., (2002). Carbon dioxide sequestering using microalga systems. National Energy Technology Laboratory. Energy & Environmental Research Center.32 pp.

Sültemeyer F., Schmidt, C., Fock, H.P., (1993). Carbonic anhydrases in higher plants and aquatic microorganisms. Physiology. Plantae 88: 179 – 190.

Varnero, M. 2011. Manual de Biogas. Ministerio de Energía-CL, PNUD, FAO, GEF. 120 pp. [en línea]. [fecha de consulta: enero 2021]. Disponible en: http://www.fao.org/3/as400s/as400s.pdf

Wu C., Zamora O., Kopel R., Richmond A., (2001). An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. Eustigmatophyceae. Aquaculture 195: 35 – 49.

Yamasaki S., Hirata H., (1995). CO2, Concentration Change in Nannochloropsis sp.
Culture Medium. Aquaculture Engineering, Vol. 14. No. 4. 357 – 365.

Yamasaki S., Yamaoka H., (2001). Effect of dissolved inorganic carbon concentration on oxygen production of a unicellular alga Nannochloropsis oculata. University, Kagoshima. Fisheries Science, 67: 533-534.

Zitelli G., Pastorelli R., Tedrici M., (2000). A Modular Flat Panel Photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination. Journal of Applied Phycology 12: 521–526.

Zou N., Wu C., Cohen Z., Richmond A., (2000). Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Ben-Gurion, University of the Negev. Journal of Phycology.35: 127 - 133.
Publicado
2021-07-14
Cómo citar
Caballero Espinosa, M., Uribe, E., Atencio, T., Collantes G., R. y Pittí Caballero, J. (2021) BIOGAS EN EL CULTIVO DE MICROALGAS: POTENCIAL COMO FUENTE DE DIÓXIDO DE CARBONO EN FOTOBIORREACTORES, Tecnociencia, 23(2), pp. 169-193. Disponible en: https://revistas.up.ac.pa/index.php/tecnociencia/article/view/2273 (Accedido: 19septiembre2021).
Sección
Artículos