This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is aimed at studying the set and the Cantor function. The Cantor set has properties that defy geometric intuition. It is proved that the Cantor function is continuous at every point in the interval [0,1], even though its graph is not composed of a single piece. The Cantor set takes its name from George F. L. P Cantor, who in 1883 used it as a research tool for one of his major concerns: the continuum.