PATOGENICIDAD DE AISLADOS NATIVOS (Beauveria bassiana) Y (Cordyceps javanica) SOBRE LARVAS DE Galleria mellonella (LEPIDOPTERA: PYRALIDAE)

Autores/as

  • Dustin Moreno-Serrano Universidad de Panamá. Facultad de Ciencias Agropecuarias. Departamento de Protección Vegetal. Panamá https://orcid.org/0000-0001-9134-2222
  • Gladys González Instituto de Innovación Agropecuaria de Panamá (IDIAP). Panamá
  • Kathia Castrejón Instituto de Innovación Agropecuaria de Panamá (IDIAP). Panamá
  • Reynaldo Vargas Universidad de Panamá. Facultad de Ciencias Agropecuarias. Departamento de Zootecnia. Panamá. Sistema Nacional de Investigación de Panamá (SNI), Panamá https://orcid.org/0000-0002-5420-9761
  • Bladimir Xavier Rodríguez-Hernández Universidad de Panamá. Facultad de Ciencias Agropecuarias. Departamento de Protección Vegetal. Panamá https://orcid.org/0000-0001-5297-1595
  • Alex Ríos-Moreno Universidad de Panamá. Facultad de Ciencias Agropecuarias. Departamento de Protección Vegetal. Panamá. Sistema Nacional de Investigación de Panamá (SNI), Panamá https://orcid.org/0000-0003-3117-9659

Palabras clave:

Control biológico, Hongos entomopatógenos, IDIAP D-Bb1400, IDIAP RS-Cj006, Mortalidad

Resumen

El objetivo de este trabajo fue evaluar la capacidad patogénica de aislados nativos de los hongos entomopatógenos Beauveria bassiana (IDIAP D-Bb1400) y Cordyceps javanica (IDIAP RS-Cj006), obtenidos del Instituto de Innovación Agropecuaria de Panamá (IDIAP). La evaluación fue realizada mediante bioensayos en condiciones de laboratorio, utilizando larvas de V instar del insecto modelo Galleria mellonella, sumergiéndolas en suspensiones de 1x107, 1x108 y 1x109 conidios ml-1, obtenidas de un pie de cría de la Facultad de Ciencias Agropecuarias de la Universidad de Panamá, sede Chiriquí. Se determinó la mortalidad expresada por los aislados en relación con el tiempo, estimándose el tiempo letal medio TL50, y la concentración letal media CL50. En todos los casos se presentaron porcentajes de mortalidad mayores al 80% para ambos aislados y se observaron diferencias intraespecíficas en la mortalidad de las larvas tratadas a concentraciones de 1x107, 1x108 y 1x109 conidios ml-1 para ambos aislados. De acuerdo con los resultados obtenidos Cordyceps javanica fue más patogénico con TL50: 7.00 días y CL50: 1.23x108 conidios ml-1, aunque el aislado IDIAP D-Bb1400, también mostro un excelente potencial (TL50: 7.31 días y CL50: 1.55x108 conidios ml-1). Sin embargo, no hubo diferencias significativas interespecíficas (p=0.41) entre ambos aislados y concentraciones evaluadas (?2 (2) = 0.41, p=0.81). Mediante este trabajo se evidencio por primera vez el gran potencial patogénico de ambos aislados en las larvas tratadas de G. mellonella en condiciones de laboratorio, por lo que sería importante y coherente realizar evaluaciones en campo con estos y otros aislados nativos, debido a su promisorio potencial en el control de plagas en la agricultura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Altamira, P. (2020). Microorganismos con actividad entomopatógena. Boletín No.419, INIA-Instituto de Investigaciones Agropecuarias.

Anand, R., Prasad, B. & Tiwary, B. (2009). Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl, 54(1), 85–92 pp. doi: https://doi.org/10.1007/s10526-008-9157-x

Behie, W. & Bidochka, M. (2014). Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Applied Environmental Microbiology, 80(1), 1553–1560 pp.

Bidochka, M., Menzies, F. & Kamp, A. (2002). Genetic Bassiana, groups of the insect-pathogenic fungus beauveria bassiana are associated with habitat and thermal growth preferences. Archives of Microbiology, 178(1), 531–537 pp.

Butt, T., Coates, C., Dubovskiy, I. & Ratcliffe, A. (2016). Chapter nine-entomopathogenic fungi: New insights into host-pathogen interactions. Advances in Genetics, 94(1), 307–364 pp.

Chandel, Y., Sharma, S. & Verma, K. (2003). Comparative biology of the greater wax moth, Galleria mellonella and lesser wax moth, Achoria grisella. Forest Pest Management and Economic Zoology, 11, 69-74 pp.

Charnley, A. & Collins, S. (2007). Entomopathogenic fungi and their role in pest control. in Kubicek and Druzhinina (eds), The Mycota IV: Environmental and Microbial Relationships (2nd edition), 159-187 pp.

Cheng, X., Gao, Y., Yang, Ch., Zhang, Xi., Qin, F., Lu, J., Gao, Y. & Xu, R. (2018). Potencial del hongo entomopatógeno Isaria javanica para el control del gusano de la papa Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Israel Journal of Entomology, 48(2), 197–208 pp. https://doi.org/10.5281/zenodo.1453866
Faria, M. & Wraight, S. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worlwide coverage and international clasification of formulation types. Biological Control, 43(3), 237–256 pp. doi: 10.1016/j.biocontrol.2007.08.001

Flores-Pérez, L., Bautista, N., Valdez, J., Morales, O. & Quiñones, S. (2005). Comparación de dos técnicas de medición de cápsulas cefálicas para separar estadios larvales de Copitarsia incommoda (Walker) (Lepidoptera: Noctuidae). Acta zoológica mexicana, 21(2), 109-113 pp.

Freed, S., Jin Feng-Lian., Muhammad, N., & Hussian, A. (2012). Toxicity of Proteins Secreted by Entomopathogenic Fungi against Plutella xylostella (Lepidoptera: Plutellidae). International journal of agriculture and biology, 14(2), 291–295 pp.
French, E., & Hebert, T. (1982). Metodología de investigación fitopatología. ed. M de la Cruz. San José, Costa Rica, IICA. 290 pp.

Gallo, D., Nakano, S., Silveiro, N., Carvalho, G., Batista, E., Berti, F., Parra, R., & Zucchi, S. (1988). En: Manual de entomologia agrícola. 2nd. ediçión. Ed. Agronómica Ceres Lida., Sao Paulo, 291-293 pp.

González Dufau, G., Caballero, S., G, Contreras., Vergara, G., & Mejía, L. (2015). Caracterización morfológica y molecular del aislado endémico RS006, biocontrolador de Hypothenemus hampei en Panamá. Revista Ciencia Agropecuaria, 22(1), 78–85pp. http://www.revistacienciaagropecuaria.ac.pa/index.php/ciencia-agropecuaria/article/view/166/131

González Dufau, G., Monzón, A., Santamaría Guerra, J., Santo, U., Caballero, S., Castrejon, K., & Sanjur, M. (2021). Caracterización morfofisiológica y molecular de hongos entomopatógenos asociados a Hypothenemus hampei en áreas cafetaleras de la comarca Ngäbe-Buglè. La Calera, 21(36). https://doi.org/10.5377/calera.v21i36.11555

Harding, C., Schroeder, G., Collins, J., & Frankel, G. (2013). Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection. Journal of Visualized Experiments, 81, e50964, doi:10.3791/50964

Hasan, W., Assaf, L., & Abdullah, S. (2012). Occurrence of entomopathogenic and other opportunistic fungi in soil collected from insect hibernation sites and evaluation for their entomopathogenic potential. Bulletin of the Iraq Natural History.Museum, 12(1), 19–27 pp. https://www.iasj.net/iasj?func=article&aId=60719

Hernández, P., Martínez, R., & Padilla, A. (2019). Organismos entomopatógenos como control biológico en los sectores agropecuario y forestal de México: una revisión. Revista Mexicana de Ciencias Forestales, 10(56), https://cienciasforestales.inifap.gob.mx/editorial/index.php/forestales/article/view/496
Jackman, J. & Drees, B. (1998). A field guide to Texas insects. Houston: Gulf Publishing Company.

Jander, G., Rahme, L. G. & Ausubel, F. M. (2000). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. Journal of. Bacteriology, 182(1), 3843-384 pp.

Joyce, S. & Gahan, C. (2010). Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology, 156(1), 3456-3468 pp.

Kavanagh, K. & Fallon, J. (2010). Galleria mellonella larvae as models for studying fungal virulence. Fungal Biology Reviews, 24(1), 79–83 pp. doi: 10.1016/j.fbr.2010.04.001

Klieber, J. & Reineke, A. (2016). The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. Journal Applied Entomology, 140(1), 580–589 pp.

Lavine, M. & Strand, M. (2002). Insect hemocytes and their role in immunity. Insect Biochemistry Molecular Biology, 32(1), 1295-1309 pp.

Liu, H. & Bauer, L. (2006). Susceptibility of Agrilus planipennis (Coleoptera: Buprestidae) to Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology, 99(4), 1096–1103 pp. doi: https://doi.org/10.1603/0022-0493-99.4.1096

Litwin, A., Nowak, M. & Rózalska, S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in environmental science and biotechnology, 19(1), 23-42 pp.

Martínez, E. (2009). Selección de hongos entomopatógenos para el control biológico de áfidos (T. citricida) de Coclé. Trabajo de grado (maestría en microbiología ambiental). Vicerrectoría de investigación y postgrado, Universidad de Panamá.

McKinnon, A., Saari, S., Moran-Diez, M., Meyling, N., Raad, M. & Glare, T. (2017). Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. Biocontrol, 62(1), 1–17 pp.

Mena, J. (1999). Patogenicidad y variación de efectividad de Beauveria bassiana y Metharizium anisopliae en diferentes condiciones ambientales, en poblaciones naturales de Premnotripex vorax (Hustache). Trabajo de grado (maestría en biología). Facultad de Ciencias, Universidad del valle.

Quesada-Moraga, E., Maranhao, E., Valverde, G. & Santiago-Álvarez, C. (2006a). Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biological Control, 36(1), 274–287 pp.
Quesada-Moraga, E., Ruiz, G. & Santiago-Álvarez, C. (2006b). Laboratory Evaluation of Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae Against Puparia and Adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 99(6), 1955–1966 pp.

Quesada-Moraga, E., Martin-Carballo, I., Garrido-Jurado, I. & Santiago-Álvarez, C. (2008). Autodissemination of Metarhizium anisopliae between adults of the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Biological Control, 47(1), 115–124 pp. doi: ttps://doi.org/10.1016/j.biocontrol.2008.07.002

Quesada-Moraga, E., Ortiz-Urquiza, A., Garrido-Jurado, I., Muñoz-Ledesma, F., García-Fernández, P. y Santiago-Álvarez, C. (2009). Los hongos entomopatógenos y sus proteínas insecticidas en el control de plaga de insectos. III Jornadas de Divulgación de La Investigación En Biología Molecular, Celular y Biotecnología. Córdoba, España., 15–19 pp.

Ríos-Moreno, A., Garrido-Jurado, I., Resquín-Romero, G., Arroyo-Manzanares, N., Arce, L. & Quesada-Moraga, E. (2016). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science and Technology, 26(1), 1574-1585 pp.

Rijo, E., Matos, N. y Barrios, A. (1996). Desarrollo de Galleria mellonella alimentada con dieta a base de derivados de la industria azucarera. Ciecia Tecnología Agrícola en Protección de Plantas, 12(1), 61-69 pp.

Santi, L., Beyes de Silva, W., Berger, M., Guimares, J., Schrank, A. & Vainstein, M. (2010). Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, 55(4), 874–880 pp. doi: 10.1016/j.toxicon.2009.12.012

Shimazu, M. & Takatsuka, J. (2010). Isaria javanica (anamorphic Cordycipitaceae) isolated from gypsy moth larvae, Lymantria dispar (Lepidoptera: Lymantriidae), in Japan. Applied Entomology and Zoology, 45(3), 497–504 pp. doi: 10.1303/aez.2010.497

Vega, F., Goettel, M., Blackwell, M., Chandler, D., Jackson, M., Keller, S., Koire, M., Maniania, N., Monzón, A., Rangel, D. & Roy, H. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4), 149–159 pp. doi: 10.1016/j.funeco.2009.05.001

Vega, F. (2018). The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia, 110, 4–30 pp.

Vertyporokh, L., Hu?as-Stasiak, M. & Wojda, I. (2020). Host-pathogen interaction after infection of Galleria mellonella with the filamentous fungus Beauveria bassiana. Insect science, 27(5), 1079–1089 pp. https://doi.org/10.1111/1744-7917.12706
Vilcinskas, A. (2010). Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insect. Virulence, 1(3), 206–214 pp. doi: 10.4161/viru.1.3.12072

Wojda, I. (2017) Immunity of the greater wax moth Galleria mellonella. Insect Science, 24(1), 342–357 pp.

Wu, S., Toews, M., Oliveira-Hofman, C., Behle, R., Simmons, A. & Shapiro-Ilan, D. (2020). Environmental Tolerance of Entomopathogenic Fungi: A New Strain of Cordyceps javanica Isolated from a Whitefly Epizootic Versus Commercial Fungal Strains. Insects, 11(10), 711 pp. http://dx.doi.org/10.3390/insects11100711

Descargas

Publicado

2022-06-06

Cómo citar

Moreno-Serrano, D., González, G., Castrejón, K., Vargas, R., Rodríguez-Hernández, B. X., & Ríos-Moreno, A. (2022). PATOGENICIDAD DE AISLADOS NATIVOS (Beauveria bassiana) Y (Cordyceps javanica) SOBRE LARVAS DE Galleria mellonella (LEPIDOPTERA: PYRALIDAE). Revista Investigaciones Agropecuarias, 4(2), 31–43. Recuperado a partir de https://revistas.up.ac.pa/index.php/investigaciones_agropecuarias/article/view/2925