FUNCIONES BIOACTIVAS DE PÉPTIDOS DERIVADOS DE PROTEÍNAS HIDROLIZADAS DE PESCADO:

APLICACIÓN EN LA NUTRICIÓN PORCINA. REVISIÓN

Autores/as

Palabras clave:

proteína, harina de pescado, hidrolizados, cerdos, péptidos

Resumen

El consumo mundial de pescado ha alcanzado un ritmo significativamente superior al incremento demográfico durante los mismos años, reflejado un mayor nivel de desechos obtenidos de los sistemas de transformación en la industria pesquera. Una proporción significativa de estos desechos se transforman en harina, aceite y ensilaje de pescado debido a su potencial como fuentes proteicas de alto valor biológico. Adicional, las proteínas hidrolizadas están siendo una tendencia en los últimos años, ya que además de ser una excelente fuente de aminoácidos, permiten la aplicación de procesos de hidrólisis para la obtención de péptidos bioactivos. Los péptidos bioactivos derivados del pescado tienen diferentes funciones fisiológicas. Estas funciones, determinadas por la estructura peptídica, están asociadas principalmente a la señalización celular, provocando cambios estructurales, moleculares y celulares con efectos biológicos, tales como antioxidante, antimicrobial e inmunomodulador. Evidencias científicas indican beneficios de la inclusión de proteínas hidrolizadas de pescado en dietas para cerdos sobre el desempeño productivo en comparación con otras fuentes proteicas de origen vegetal o animal, no sometidas previamente a un proceso de hidrólisis. La utilización de hidrolizados proteicos derivados del pescado y la tendencia en la obtención de péptidos específicos prometen un alto impacto en la nutrición porcina, como también una herramienta para el aprovechamiento de subproductos de desechos. Se hace necesario el estudio de otras posibles funciones de los péptidos derivados de proteínas hidrolizadas y sus niveles de inclusión en las dietas para cerdos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abuine, R., Rathnayake, A., y Byun, H. (2019). Biological activity of peptides purified from fish skin hydrolysates. Fisheries and Aquatic Sciences, 22: 1-14, https://doi.org/10.1186/s41240-019-0125-4
Acosta, J., Roa, F., González, I., Astuyab, A., Maura, R., Montesinoa R., Muñoz, C., Camacho, F., Saavedra, P., Valenzuela, A., Sánchez, O., y Toledo, J. (2019). In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish and Shellfish Immunology, 88, 587-594.
Ahn, C., Je, J., y Cho, Y. (2012). Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49: 92–98, https://doi.org/10.1016/j.foodres.2012.08.002
Barlow, S. (1993). Fish meal. Encyclopedia of Food and Technology and Nutrition.
Barzana, E., y Garcia, M. (1994). Production of fish protein concentrates. In A. M. Martin (Ed). Fisheries processing; biotechnological applications (pp. 206-222). Germany, Springer-Science + Business media.
Bucci, L., y Unlu, L. (2000). Protein and amino acid supplements in exercise and sport. In: Wolinsky I, Driskell JA (eds) Energy-yielding macronutrients and energy metabolism in sports nutrition.
Calder, P. (2021). Health benefits of omega-3 fatty acids. Omega-3 Delivery Systems.
Production, Physical Characterization and Oxidative Stability. Academic Press, Massachusetts., EE.UU.
Chalamaiah, M., Dinesh K., Hemalatha, R., y Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135: 3020-3038, https://doi.org/10.1016/j.foodchem.2012.06.100
Cho, J., y Kim, I. (2011). Fish meal – nutritive value. Journal of Animal Physiology and Animal Nutrition, 95: 685-692, https://doi.org/10.1111/j.1439-0396.2010.01109.x
Cipolari, O., de Oliveira, X., y Conceicao, K. (2020). Fish bioactive peptides: a systematic review focused on sting and skin. Journal of Aquaculture, 515, https://doi.org/10.1016/734598
Cooper, G., y Hausman, R. (2004). The Cell: A Molecular Approach, third ed. Sinauer Associates, Washington, D.C.
Dai, Z., Wu, Z., Jia, S., y Wu, G. (2014). Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. Journal of Chromatography B, 964: 116–27.
Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., y Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107:1485–1493.
Elias, R., Kellerby, S., y Decker, E. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Sciences and Nutrition, 48: 430–41.
Fitzgerald, R., y Murray, B. (2006). Bioactive peptides and lactic fermentations. Int J Dairy Technol, 59:118-125.
Food and Agriculture Organization of the United Nations. (2018). The state of world fisheries and aquaculture. Contributing to food security and nutrition for all.
Gevaert, B., Veryser, L., Verbeke, F., Wynendaele, E., y De Spiegeleer, B. (2016). Fish hydrolysates: A regulatory perspective of bioactive peptides. Protein and Peptide Letters, 23: 1-9, https://doi.org/10.2174/0929866523666161102122637
Gilbert, E., Wong, E., y Webb, K. (2008). Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. Journal of Animal Science, 86: 2135-2155, https://doi.org/10.2527/jas.2007-0826
Gottlob, R., DeRouchey, J., Tokach, M., Goodband, R., Dritz, S., Nelssen, J., Hastad, G., y Knabe. D. (2006). Amino acid and energy digestibility of protein sources for growing pigs. Journal of Animal Science, 84: 1396-1402
Halim, N., Yusof, H., y Sarbon, N. (2016). Functional and bioactive properties of fish protein hydrolysates and peptides: A comprehensive review. Trends Food Sciences and Technology, 51: 24-33.
Harnedy, P., y FitzGerald, R. (2012). Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, 4: 6-24, https://doi.org/10.1016/j.jff.2011.09.001
He, X., Cao, W., Pan, G., Yang, L., y Zhang, C. (2014). Enzymatic hydrolysis optimization of paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. Journal of the Science of Food and Agriculture, 95: 1544-1553. https://doi.org/10.1002/jsfa.6859
Hordur, K., Rasco, B. (2000). Fish protein hydrolysates: Production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81.
Hou, Y., Wu, Z., Dai, Z., Wang, G., y Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8, https://doi.org/10.1186/s40104-017-0153-9
Huang, C., Wu, C., Yang, J., Li, Y., y Kuo, J. (2015). Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. Journal of Food and Drug Analysis, 23: 671-678. https://doi.org/10.1016/j.jfda.2014.06.009
Ishak, N., y Sarbon, N. (2018). A Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food and Bioprocess Technology, 11(1), 2–16, https://doi.org/10.1007/s11947-017-1940-1
Jai, R., Nazeer, R., y Sampath, N. (2011). Purification and Identification of Antioxidant Peptide from Black Pomfret, Parastromateus niger (Bloch, 1975) Viscera Protein Hydrolysate. Food Sci. Biotechnol, 20(4): 1087-1094
Je, J., Qian, Z., Byun, H., y Kim, S. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42, 840–846.
Je, J., Park, P., y Kim, S. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38, 45–50.
Jones, A., Woodworth, J., Tokach, M., Goodband, R., DeRouchey, J., y Dritz, S. (2018). Fish meal solubles. Do they influence nursery pig performance. Available in: https://www.nationalhogfarmer.com/print/22741
Keledjian, A., Brogan, G., Lowell, B., Warrenchuk, J., Enticknap, B., Shester G., Hirshfield, M., y Cano, D. (2014). Wasted catch: unsolved problems in U.S. fisheries. Oceana. Available in: https://oceana.org/wp-content/uploads/sites/18/Bycatch_Report_FINAL.pdf
Kim, M., Kim, K., Sung, N., Byun, E., Nam, H., y Ahn, D. (2018). Immune-enhancement effects of tuna cooking drip and its enzymatic hydrolysate in balb/c mice. Food Sci Biotechnol. 27(1): 131-137, https://doi.org/10.1007/s10068-017-0278-9
Kim, S., y Easter, R. (2001). Nutritional value of fish meals in the diet for young pigs. Journal of Animal Science, 79: 1829, https://doi.org/10.2527/2001.7971829x
Kim, S., Je, J., y Kim, S. (2007). Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. The Journal of Nutritional Biochemistry, 18, 31–38.
Kristinsson, H., y Rasco, B. (2000). Fish protein hydrolysates: Production, biochemical, and functional properties. In Critical Reviews in Food Science and Nutrition (Vol. 40, Issue 1). https://doi.org/10.1080/10408690091189266
Li, Q., Brendemuhl, J., Jeong, K., y Badinga, L. (2014). Effects of dietary omega-3 polyunsaturated fatty acids on growth and immune response of weanling pigs. Journal of Animal Science and Technology, 56: 7 https://doi.org/10.1186/2055-0391-56-7
Lima, C., Campos, J., Filho, J., Converti, A., da Cunha, M., y Porto, A. (2015). Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Sciences and Technology, 52: 4459–4466. https://doi.org/10.1007/s13197-014-1463-y
Lopera, L., Sepúlveda, C., Vásquez, P., Figueroa, O., Zapata, J. (2018). Byproducts of aquaculture processes: development and prospective uses. Review. Foods: Science, Engineering and Technology. 25(3), 128-140. https://doi.org/10.17533/udea.vitae.v25n3a03
López, L., Gutiérrez, J., y Serna, S. (2014). Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients. Journal of Food Sciences, 79: 273–283. https://doi.org/10.1111/1750-3841.12365
López, G., Dublan, O., Arizmendi, D., Gómez, Leobardo. (2022). Antioxidant and antimicrobial peptides derived from food proteins. Molecules, 27(4), 1343, https://doi.org/10.3390/molecules27041343
Mahro, B., y Timm, M. (2007). Potential of biowaste from the food industry as a biomass resource. Engineering in Life Sciences. 7: 457?468. https://doi.org/10.1002/elsc.200620206
Miles, R., y Chapman, F. (2012). The benefits of fish meal in aquaculture diets. University of Florida, IFAS Extension.
Moughan, P., y Markwich, K. (2013). Food bioactive proteins and peptides: antimicrobial, immunomodulatory, and anti-inflammatory effects. In P.C. Calder and P, Yaqoob (Eds). Diet, immunity, and inflammation (pp. 313-340). Cambridge, UK: Woodhead publishing limited.
Murray, B., y FitzGerald, R. (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity, and production. Current Pharmaceutical Design, 13: 773–791, https://doi.org/10.2174/138161207780363068
Mustatea, G., Ungureanu, E., y Lorga, E. (2019). Protein acidic hydrolysis for amino acids analysis in food- progress over time: a short review. Journal of Hygienic Engineering and Design, 26: 81-87.
Norgaard, J., Blaabjerg, K., y Poulsen, H. (2012). Salmon protein hydrolysate as a protein source in feed for young pigs. Animal Feed Science and Technology, 177: 124-129, https://doi.org/10.1016/j.anifeedsci.2012.08.003
NRC, (2012). Nutritional requirements of swine. 11th edition. The National Academies Press, Washington, D.C.
Pasupuleti, V., y Braun, S. (2010). State of the art manufacturing of protein hydrolysates. In V.K. Pasupuleti and A.L. Demain (Eds), Protein hydrolysates in biotechnology (pp. 11-32). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-6674-0_2
Pasupuleki, V., Holmes, C., y Demain, A. (2010). Applications of protein hydrolysates in biotechnology. In Pasupuleki V.K, & Demain A.L (Eds), Protein hydrolysates in biotechnology (pp. 1–9). New York: Springer Science.
Petrova, I., Tolstorebrov, I., y Eikevik, T. (2018). Production of fish protein hydrolysates step by step: Technological aspects, equipment used, major energy costs and methods of their minimizing. International Aquatic Research, 10:223-241, https://doi.org/10.1007/s40071-018-0207-4
Pihlanto, A. (2000). Bioactive peptides derived from bovine whey proteins. Trends Food Sciences Technology, 11:347–56
Rauta, P., Nayak, B., y Das, S. (2012). Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunology Letters, 148, 23–33
Reddy, K., Yedery, R., y Aranha, C. (2004). Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 24: 536–47. https://doi.org/10.1016/j.ijantimicag.2004.09.005
Richardson, T. y Hyslop, D. (1984). Enzymes, in Food Chemistry, 2nd ed., Fennema, O. R., Ed., Marcel Dekker Inc., New York.
Sánchez, A., y Vásquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1: 29-46. https://doi.org/10.1093/fqs/fyx006
Shabir, U., Ali, S., Magray, A., Ganai, B., Firdous, P., Hassan, T, y Nazir, R. (2018). Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microbial Pathogenesis, 114: 50–56. https://doi.org/10.1016/j.micpath.2017.11.039
Skanderby, M. (1994). Protein hydrolysates: their functionality and applications, Food Technol. Int. Eur., 10, 141.
Salerno, G., Parrinello, N., Salerno, G., Parrinello, N., y Roch, P. (2007). cDNA sequence and tissue expression of an antimicrobial peptide, dicentracin; a new component of the moronecidin family isolated from head kidney leukocytes of sea bass, Dicentrarchus labrax. Comp Biochem Physiol B Biochem Mol Biol, 146(4):521–529.
Sierra, L., Fan, H., Zapata, J., y Wu, J. (2021). Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. Food Science and Technology, 146.
Tang, Z., Yin, Y., Zhang, Y., Huang, R., Sun, Z., Li, T., Chu, W., Kong, X., Li, L., Geng, M., y Tu, Q. (2009). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. British Journal of Nutrition,101: 998–1005, https://doi.org/10.1017/S0007114508055633
Thakar, P., Patel, J., y Joshi, N. (1991). Protein hydrolysates: a review, Indian J. Dairy Sci., 44(9), 557.
Thuy, N., y Ha, N.C. (2016). Effect of replacing marine fish meal with catfish (Pangasius hypopthalmus) by-product protein hydrolysate on the growth performance and diarrhea incidence in weaned piglets. Tropical Animal Health and Production, 48:1435-1422
Tucker, J., Naranjo, V., Bidner, T., y Southern, L. (2011). Effect of salmon protein hydrolysate and spray-dried plasma protein on growth performance of weanling pigs. Journal of Animal Science. 89: 1466–1473
Venugopal, V. (2016). Enzymes from seafood processing waste and their applications in seafood processing. Advances in Food and Nutrition Research, 78: 47-69, https://doi.org/10.1016/bs.afnr.2016.06.004
Walther, B., y Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal for Vitamin and Nutrition Research, 81: 181-192. https://doi.org/10.1024/0300-9831/a000054
Ween, O., Stangeland, J. K., Fylling, T. S., y Aas, G. (2017). Nutritional and functional properties of fishmeal produced from fresh by-products of cod (gadus morhua L.) and saithe (pollachius virens). Heliyon, 3, https://doi.org/10.1016/j.heliyon.2017.e00343
Xiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., y Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6, https://doi.org/10.1186/s40104-015-0018-z
Yang, R., Zhang, Z., Pei, X., Han, X., Wang, J., Wang, L., Long, Z., Shen, X., y Li, Y. (2009). Immunomodulatory effects of marine oligopeptide preparation from chum salmon (oncorhynchus keta) in mice. Food Chemistry, 113: 464-470. https://doi.org/10.1016/j.foodchem.2008.07.086
Zhantian, S., Ma, Q., Li, Z., y Ji, Ch. (2009). Effect of partial substitution of dietary spray-dried porcine plasma or fishmeal with soybean and shrimp protein hydrolysate on growth performance, nutrient digestibility and serum biochemical parameters of weanling piglets. Asian-Aust. J. Anim. Sci, 22: 1032-1037.
Zinn, K., Hernot, D., Fastinger, N., Karr?Lilienthal, L., Bechtel, P., Swanson, K., y Fahey, G. (2009). Fish protein substrates can substitute effectively for poultry by?product meal when incorporated in high?quality senior dog diets. Journal of Animal Physiology and Animal Nutrition, 93: 447-455, https://doi.org/10.1111/j.1439-0396.2008.00826.x

Descargas

Publicado

2022-06-06

Cómo citar

Mudarra, R. (2022). FUNCIONES BIOACTIVAS DE PÉPTIDOS DERIVADOS DE PROTEÍNAS HIDROLIZADAS DE PESCADO:: APLICACIÓN EN LA NUTRICIÓN PORCINA. REVISIÓN. Revista Investigaciones Agropecuarias, 4(2), 121–136. Recuperado a partir de https://revistas.up.ac.pa/index.php/investigaciones_agropecuarias/article/view/2933