Palabras clave:

Óxido de zinc, cerdos, proteína, hemoglobina, leucocitos


Un total de 36 cerdos (?Landrace x Yorkshire X ?Pietrain; 23±2 días edad; 7.41±0.15 kg) fueron utilizados para evaluar el efecto de la suplementación de niveles elevados de zinc (NEZ), en dietas con niveles reducidos de proteína, sobre el desempeño productivo, perfil hematológico y control de diarrea durante 42 días post-destete. Los cerdos fueron asignados a 3 tratamientos con 3 repeticiones/tratamiento y 4 cerdos por repetición durante tres fases (F) con 14 días/fase. Los tratamientos fueron: control positivo; CP) formulado para suplir los requerimientos nutricionales establecidos por la NRC, (2012); control negativo; CN) similar a CP, con una reducción del 8% lisina y 5% de proteína cruda; PZ) similar a CN, más 1600 y 1500 ppm de Zn como ZnO durante la F1 y F2, respectivamente. En la F3, los cerdos fueron alimentados con una dieta sin NEZ. Se utilizó un diseño completamente al azar, y los datos fueron contrastados mediante un análisis de varianza (ANOVA) con comparación de medias. Los cerdos alimentados con PZ tuvieron una mayor ganancia de peso (GDP) y consumo de alimento diario (CDA) durante la F1 y F1-2 (P< 0.05). Una interacción en la concentración de hemoglobina (Trt*Día= P< 0.10), un aumento en el porcentaje de linfocitos, menor relación neutrófilo:linfocito, como también mayor porcentaje de materia seca fecal fueron encontrados en los cerdos alimentados con PZ (P< 0.05). En conclusión, la suplementación de NEZ mejora la GDP, reduce la incidencia de diarrea y estimula el perfil leucocitario en cerdos durante el primer mes post destete.


Los datos de descargas todavía no están disponibles.


Andreini, C., & Bertini, I. (2012). A bioinformatics view of zinc enzymes. Journal of Inorganic Biochemistry, 111, 150–156. https://doi.org/10.1016/j.jinorgbio. 2011.11.020

Arredondo, M., Martínez, R., Núñez, M., Ruz, M., & Olivares, M. (2006). Inhibition of iron and copper uptake by iron, copper and zinc. Biol Res, 39, 95–102.

Boudry, G., Péron, V., Le, I., Lallès, J., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256

Cantor H. (1980). Regulation of the Immune System by Lymphocyte Sets: Analysis in Animal Models. Clin Immunobiol, 4:89–98.

Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2–5. https://doi.org/10.1186/2049-1891-4-19

Collins, C., Pluske, J., Morrison, R., McDonald, T., Smits, R., Henman, D., Stensland, I., & Dunshea, F. (2017). Post-weaning and whole-of-life performance of pigs is determined by live weight at weaning and the complexity of the diet fed after weaning. Animal Nutrition, 3(4), 372–379. https://doi.org/10.1016/j.aninu. 2017.01.001

de Lange, C., Pluske, J., Gong, J., & Nyachoti, C. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1–3), 124–134. https://doi.org/10.1016/j.livsci. 2010.06.117

Dubreuil, J., Issacson, R., & Schifferli, D. (2016). Animal Enterotoxigenic Escherichia Coli. HHS Public Access, 7(1). https://doi.org/10.1128/ecosalplus.

Estienne, M., Clark, S., y Williams, K. A. (2019). Growth performance and hematology characteristics in pigs treated with iron at birth and weaning and fed a nursery diet supplemented with a pharmacological level of zinc oxide. Journal of Swine Health and Production, 27(2), 64–75.

Fraker, P. (2005). Roles for Cell Death in Zinc Deficiency. The Journal of Nutrition, 135(3), 359–362.

Gan, Z., Wei, W., Li, Y., Wu, J., Zhao, Y., Zhang, L., Wang, T., y Zhong, X. (2019). Curcumin and resveratrol regulate intestinal bacteria and alleviate intestinalinflammation in weaned piglets. Molecules, 24(7). https://doi.org/10.3390/ molecules24071220

Goering, M., y Van Soest, P. (1970). Forage Fiber Analysis (apparatus, reagents, procedures and some applications). Agricul-tural Handbook No. 379, USDA, Washington DC.

Gresse, R., Chaucheyras, F., Fleury, M., Van, T., Forano, E., y Blanquet, S. (2017). Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 25(10), 851–873. https://doi.org/10.1016/j.tim.2017.05.004

Grüngreiff, K., Gottstein, T., y Reinhold, D. (2020). Zinc deficiency—an independent risk factor in the pathogenesis of haemorrhagic stroke? Nutrients, 12(11), 1–11. https://doi.org/10.3390/nu12113548

Haase, H., y Rink, L. (2014). Zinc signals and immune function. BioFactors, 40(1), 27–40. https://doi.org/10.1002/biof.1114

Hambidge, M., Cousins, R., y Costello, R. (2000). Zinc and health: Current status and future directions: Introduction. Journal of Nutrition, 130(5 SUPPL.).

Han, Y., y Thacker, P. (2009). Performance, nutrient digestibility and nutrient balance in weaned pigs fed diets supplemented with antibiotics or zinc oxide. In Journal of Animal and Veterinary Advances (Vol. 8, Issue 5, pp. 868–875). https://doi.org/10.3923/javaa.2009.868.875

Heidbüchel, K., Raabe, J., Baldinger, L., Hagmüller, W., y Bussemas, R. (2019). One iron injection is not enough—iron status and growth of suckling piglets on an organic farm. Animals, 9(9), 1–12. https://doi.org/10.3390/ani9090651

Heo, J., Kim, J., Hansen, C., Mullan, B., Hampson, D., Pluske, J., Kim, J., Hansen, C., y Mullan, B. (2008). Effects of feeding low protein diets to piglets on plasma urea nitrogen , faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Archives of Animal Nutrition, 62(5), 343-358. https://doi.org/10.1080/17450390802327811

Hill, G., Mahan, D., Carter, S., Cromwell, G., Ewan, R., Harrold, R., Lewis, A., Miller, P., Shurson, G., Veum, T., Cline, T., Crenshaw, T., Hollis, G., Libal, G., Nelssen, J., Yen, J., y Layman, D. (2001). Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. Journal of Animal Science, 79(4), 934–941. https://doi.org/10.2527/2001.794934x

Hojyo, S., & Fukada, T. (2016). Roles of Zinc Signaling in the Immune System. Journal of Immunology Research, 1-9. Doi: 10.1155/2016/6762343

Hung, Y., Hu, Q., Faris, R., Guo, J., Urriola, P., Shurson, G., Chen, C., & Saqui, M. (2020). Analysis of Gastrointestinal Responses Revealed Both Shared and Specific Targets of Zinc Oxide and Carbadox in Weaned Pigs. Antibiotics, 9, 463. doi:10.3390/antibiotics9080463

Imtiaz, F., Shafique, K., Mirza, S., Ayoob, Z., Vart, P., & Rao, S. (2012). Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int Arch Med, 5(2).

Jian, X., & Ho, I. (2018). Low dose of coated zinc oxide is as e ff ective as pharmacological zinc oxide in promoting growth performance , reducing fecal scores , and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245(May), 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011

Kim, J., Mullan, B, Hampson, D., & Pluske, J. (2007). Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. British Journal of Nutrition, 99, 1217–1225. https://doi.org/10.1017/S0007114507868462

King, L., Frentzel, J., Mann, J., & Fraker, P. (2005). Chronic Zinc Deficiency in Mice Disrupted T Cell Lymphopoiesis and Erythropoiesis While B Cell Lymphopoiesis and Myelopoiesis Were Maintained. Journal of the American College of Nutrition, 24(6), 494–502. https://doi.org/10.1080/07315724.2005.10719495

Kirchhoff, P., Socrates, T., Sidani, S., Duffy, A., Breidthardt, T., Grob, C., Viehl, C., Beglinger, C., Oertli, D., & Geibel, J. P. (2011). Zinc Salts Provide a Novel , Prolonged and Rapid Inhibition of Gastric Acid Secretion. Am J Gastroenterol, 106, 62–71. https://doi.org/10.1038/ajg.2010.327

Lee, S. R. (2018). Critical Role of Zinc as Either an Antioxidant or a Prooxidant in. Oxidative Medicine and Cellular Longevity, 1–11. https://doi.org/10.1155/2018/9156285

Liu, Y., Huang, J., Hou, Y., Zhu, H., Zhao, S., Ding, B., Yin, Y., Yi, G., Shi, J., & Fan, W. (2008). Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. British Journal of Nutrition, 100(3), 552–560. https://doi.org/10.1017/S0007114508911612

Malech, R; DeLeo, F; & Quinn, M. (2020). The Role of Neutrophils in the Immune System: An Overview. Methods Mol Biol, 3(10). https://doi.org/10.1007/978-1-0716-0154-9_1.

Mavromichalis, I., Peter, G., Parr, T., Ganessunker, D, & Baker, D. (2000). Growth-promoting efficacy in young pigs of two sources of zinc oxide having either a high or a low bioavailability of zinc. Journal of Animal Science, 78(11), 2896–2902. https://doi.org/10.2527/2000.78112896x

Miller, E., Luecke, R., Ullrey, D., Baltzer, B., Bradley, B., & Hoefer, J. (1968). Biochemical, skeletal and allometric changes due to zinc deficiency in the baby pig. The Journal of Nutrition, 95(2), 278–286. https://doi.org/10.1093/jn/95.2.278
NRC, 2012. Nutritional requirements of swine. 11th edition. The National Academies Press, Washington, D.C.

Oleske, J., Westphal, M., Shore, S., Gorden, D., Bogden, J., & Nahmias, A. (1979). Zinc Therapy of Depressed Cellular Immunity in Acrodermatitis Enteropathica: Its Correction. American Journal of Diseases of Children, 133(9), 915–918. https://doi.org/10.1001/archpedi.1979.02130090043007

Pedersen, K., & Strunz, A. (2013). Evaluation of farmers ’ diagnostic performance for detection of diarrhoea in nursery pigs using digital pictures of faecal pools. Acta Veterinaria Scandinavica, 55(1), 1. https://doi.org/10.1186/1751-0147-55-72

Perri AM, Friendship RM, Harding JCS and O'Sullivan TL 2016. An investigationof iron deficiency and anemia in piglets and the effect of iron status at weaningon post-weaning performance. Journal of Swine Health and Production 24,10–20.

Pei, X., Xiao, Z., Liu, L., Wang, G., Tao, W., Wang, M., & Leng, D. (2018). Effects of dietary zinc oxide nanoparticles supplementation on growth performance , zinc status , intestinal morphology , microflora population , and immune response in weaned pigs. J Sci Food Agric, 99, 1366–1374. https://doi.org/10.1002/jsfa.9312

Pieper, R., Vahjen, W., Neumann, K., & Zentek, A. (2011). Dose?dependent effects of dietary zinc oxide on bacterial communities and.pdf. Animal Physiology and Animal Nutrition, 96(2012), 825–833. https://doi.org/10.1111/j.1439-0396.2011.01231.x

Rhouma, M., Fairbrother, J., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1), 1–19. https://doi.org/10.1186/s13028-017-0299-7

Seip, V., Friendship, R., Amezcua, R., & Farzan, A. (2020). The relationship between hemoglobin levels at weaning and growth performance and antibody response in nursery pigs. Can Vet J, 61, 1170–1174.

Skrovanek, S. (2014). Zinc and gastrointestinal disease. World Journal of Gastrointestinal Pathophysiology, 5(4), 496. https://doi.org/10.4291/wjgp.v5.i4.496

Szuba-trznadel, A., Rz, A., Hikawczuk, T., & Fuchs, B. (2021). Effect of Zinc Source and Level on Growth Performance and Zinc Status of Weaned Piglets. Animals, 11(7), 1–10. 10.3390/ani11072030

Walk, C., Wilcock, P., & Magowan, E. (2015). Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal, 9(7), 1145–1152. https://doi.org/10.1017/S175173111500035X
Wei, X., Tsai, T., Knapp, J., Bottoms, K., Deng, F., Story, R., Maxwell, C., & Zhao, J. (2020). ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020146

Wensley, M., Tokach, M., Woodworth, J., Goodband, R., Gebhardt, J., DeRouchey, J. M., & McKilligan, D. (2021). Maintaining continuity of nutrient intake after weaning. II. Review of post-weaning strategies. Translational Animal Science, 5(1), 1–16. https://doi.org/10.1093/tas/txab022

Wijtten, P., Meulen, J. Van Der, & Verstegen, M. (2011). Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition, 105(7), 967–981. https://doi.org/10.1017/S0007114510005660

Xia, T., Lai, W., Han, M., Han, M., Ma, X., & Zhang, L. (2017). Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget, 8(39), 64878–64891. https://doi.org/10.18632/oncotarget.17612

Yamaji, S., Tennant, J., Tandy, S., Williams, M., Kaila, S., Srai, S., & Y, P. S. (2001). Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Letters, 507, 137–141.

Zhang, B., & Guo, Y. (2009). Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. British Journal of Nutrition, 102(5), 687–693. https://doi.org/10.1017/S0007114509289033




Cómo citar

Mudarra, R., Norato, J., Guerra, R., & Melgar, A. (2022). EFECTOS DE LA SUPLEMENTACIÓN DE NIVELES FARMACOLÓGICOS DE ÓXIDO DE ZINC SOBRE EL DESEMPEÑO PRODUCTIVO, PERFIL HEMATOLÓGICO Y CONTROL DE DIARREA EN CERDOS. Revista Investigaciones Agropecuarias, 4(2), 58–72. Recuperado a partir de https://revistas.up.ac.pa/index.php/investigaciones_agropecuarias/article/view/2928