Referências
Andreini, C., & Bertini, I. (2012). A bioinformatics view of zinc enzymes. Journal of Inorganic Biochemistry, 111, 150–156. https://doi.org/10.1016/j.jinorgbio. 2011.11.020
Arredondo, M., Martínez, R., Núñez, M., Ruz, M., & Olivares, M. (2006). Inhibition of iron and copper uptake by iron, copper and zinc. Biol Res, 39, 95–102.
Boudry, G., Péron, V., Le, I., Lallès, J., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256
Cantor H. (1980). Regulation of the Immune System by Lymphocyte Sets: Analysis in Animal Models. Clin Immunobiol, 4:89–98.
Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2–5. https://doi.org/10.1186/2049-1891-4-19
Collins, C., Pluske, J., Morrison, R., McDonald, T., Smits, R., Henman, D., Stensland, I., & Dunshea, F. (2017). Post-weaning and whole-of-life performance of pigs is determined by live weight at weaning and the complexity of the diet fed after weaning. Animal Nutrition, 3(4), 372–379. https://doi.org/10.1016/j.aninu. 2017.01.001
de Lange, C., Pluske, J., Gong, J., & Nyachoti, C. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1–3), 124–134. https://doi.org/10.1016/j.livsci. 2010.06.117
Dubreuil, J., Issacson, R., & Schifferli, D. (2016). Animal Enterotoxigenic Escherichia Coli. HHS Public Access, 7(1). https://doi.org/10.1128/ecosalplus.
Estienne, M., Clark, S., y Williams, K. A. (2019). Growth performance and hematology characteristics in pigs treated with iron at birth and weaning and fed a nursery diet supplemented with a pharmacological level of zinc oxide. Journal of Swine Health and Production, 27(2), 64–75.
Fraker, P. (2005). Roles for Cell Death in Zinc Deficiency. The Journal of Nutrition, 135(3), 359–362.
Gan, Z., Wei, W., Li, Y., Wu, J., Zhao, Y., Zhang, L., Wang, T., y Zhong, X. (2019). Curcumin and resveratrol regulate intestinal bacteria and alleviate intestinalinflammation in weaned piglets. Molecules, 24(7). https://doi.org/10.3390/ molecules24071220
Goering, M., y Van Soest, P. (1970). Forage Fiber Analysis (apparatus, reagents, procedures and some applications). Agricul-tural Handbook No. 379, USDA, Washington DC.
Gresse, R., Chaucheyras, F., Fleury, M., Van, T., Forano, E., y Blanquet, S. (2017). Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 25(10), 851–873. https://doi.org/10.1016/j.tim.2017.05.004
Grüngreiff, K., Gottstein, T., y Reinhold, D. (2020). Zinc deficiency—an independent risk factor in the pathogenesis of haemorrhagic stroke? Nutrients, 12(11), 1–11. https://doi.org/10.3390/nu12113548
Haase, H., y Rink, L. (2014). Zinc signals and immune function. BioFactors, 40(1), 27–40. https://doi.org/10.1002/biof.1114
Hambidge, M., Cousins, R., y Costello, R. (2000). Zinc and health: Current status and future directions: Introduction. Journal of Nutrition, 130(5 SUPPL.).
Han, Y., y Thacker, P. (2009). Performance, nutrient digestibility and nutrient balance in weaned pigs fed diets supplemented with antibiotics or zinc oxide. In Journal of Animal and Veterinary Advances (Vol. 8, Issue 5, pp. 868–875). https://doi.org/10.3923/javaa.2009.868.875
Heidbüchel, K., Raabe, J., Baldinger, L., Hagmüller, W., y Bussemas, R. (2019). One iron injection is not enough—iron status and growth of suckling piglets on an organic farm. Animals, 9(9), 1–12. https://doi.org/10.3390/ani9090651
Heo, J., Kim, J., Hansen, C., Mullan, B., Hampson, D., Pluske, J., Kim, J., Hansen, C., y Mullan, B. (2008). Effects of feeding low protein diets to piglets on plasma urea nitrogen , faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Archives of Animal Nutrition, 62(5), 343-358. https://doi.org/10.1080/17450390802327811
Hill, G., Mahan, D., Carter, S., Cromwell, G., Ewan, R., Harrold, R., Lewis, A., Miller, P., Shurson, G., Veum, T., Cline, T., Crenshaw, T., Hollis, G., Libal, G., Nelssen, J., Yen, J., y Layman, D. (2001). Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. Journal of Animal Science, 79(4), 934–941. https://doi.org/10.2527/2001.794934x
Hojyo, S., & Fukada, T. (2016). Roles of Zinc Signaling in the Immune System. Journal of Immunology Research, 1-9. Doi: 10.1155/2016/6762343
Hung, Y., Hu, Q., Faris, R., Guo, J., Urriola, P., Shurson, G., Chen, C., & Saqui, M. (2020). Analysis of Gastrointestinal Responses Revealed Both Shared and Specific Targets of Zinc Oxide and Carbadox in Weaned Pigs. Antibiotics, 9, 463. doi:10.3390/antibiotics9080463
Imtiaz, F., Shafique, K., Mirza, S., Ayoob, Z., Vart, P., & Rao, S. (2012). Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int Arch Med, 5(2).
Jian, X., & Ho, I. (2018). Low dose of coated zinc oxide is as e ff ective as pharmacological zinc oxide in promoting growth performance , reducing fecal scores , and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245(May), 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011
Kim, J., Mullan, B, Hampson, D., & Pluske, J. (2007). Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. British Journal of Nutrition, 99, 1217–1225. https://doi.org/10.1017/S0007114507868462
King, L., Frentzel, J., Mann, J., & Fraker, P. (2005). Chronic Zinc Deficiency in Mice Disrupted T Cell Lymphopoiesis and Erythropoiesis While B Cell Lymphopoiesis and Myelopoiesis Were Maintained. Journal of the American College of Nutrition, 24(6), 494–502. https://doi.org/10.1080/07315724.2005.10719495
Kirchhoff, P., Socrates, T., Sidani, S., Duffy, A., Breidthardt, T., Grob, C., Viehl, C., Beglinger, C., Oertli, D., & Geibel, J. P. (2011). Zinc Salts Provide a Novel , Prolonged and Rapid Inhibition of Gastric Acid Secretion. Am J Gastroenterol, 106, 62–71. https://doi.org/10.1038/ajg.2010.327
Lee, S. R. (2018). Critical Role of Zinc as Either an Antioxidant or a Prooxidant in. Oxidative Medicine and Cellular Longevity, 1–11. https://doi.org/10.1155/2018/9156285
Liu, Y., Huang, J., Hou, Y., Zhu, H., Zhao, S., Ding, B., Yin, Y., Yi, G., Shi, J., & Fan, W. (2008). Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. British Journal of Nutrition, 100(3), 552–560. https://doi.org/10.1017/S0007114508911612
Malech, R; DeLeo, F; & Quinn, M. (2020). The Role of Neutrophils in the Immune System: An Overview. Methods Mol Biol, 3(10). https://doi.org/10.1007/978-1-0716-0154-9_1.
Mavromichalis, I., Peter, G., Parr, T., Ganessunker, D, & Baker, D. (2000). Growth-promoting efficacy in young pigs of two sources of zinc oxide having either a high or a low bioavailability of zinc. Journal of Animal Science, 78(11), 2896–2902. https://doi.org/10.2527/2000.78112896x
Miller, E., Luecke, R., Ullrey, D., Baltzer, B., Bradley, B., & Hoefer, J. (1968). Biochemical, skeletal and allometric changes due to zinc deficiency in the baby pig. The Journal of Nutrition, 95(2), 278–286. https://doi.org/10.1093/jn/95.2.278
NRC, 2012. Nutritional requirements of swine. 11th edition. The National Academies Press, Washington, D.C.
Oleske, J., Westphal, M., Shore, S., Gorden, D., Bogden, J., & Nahmias, A. (1979). Zinc Therapy of Depressed Cellular Immunity in Acrodermatitis Enteropathica: Its Correction. American Journal of Diseases of Children, 133(9), 915–918. https://doi.org/10.1001/archpedi.1979.02130090043007
Pedersen, K., & Strunz, A. (2013). Evaluation of farmers ’ diagnostic performance for detection of diarrhoea in nursery pigs using digital pictures of faecal pools. Acta Veterinaria Scandinavica, 55(1), 1. https://doi.org/10.1186/1751-0147-55-72
Perri AM, Friendship RM, Harding JCS and O'Sullivan TL 2016. An investigationof iron deficiency and anemia in piglets and the effect of iron status at weaningon post-weaning performance. Journal of Swine Health and Production 24,10–20.
Pei, X., Xiao, Z., Liu, L., Wang, G., Tao, W., Wang, M., & Leng, D. (2018). Effects of dietary zinc oxide nanoparticles supplementation on growth performance , zinc status , intestinal morphology , microflora population , and immune response in weaned pigs. J Sci Food Agric, 99, 1366–1374. https://doi.org/10.1002/jsfa.9312
Pieper, R., Vahjen, W., Neumann, K., & Zentek, A. (2011). Dose?dependent effects of dietary zinc oxide on bacterial communities and.pdf. Animal Physiology and Animal Nutrition, 96(2012), 825–833. https://doi.org/10.1111/j.1439-0396.2011.01231.x
Rhouma, M., Fairbrother, J., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1), 1–19. https://doi.org/10.1186/s13028-017-0299-7
Seip, V., Friendship, R., Amezcua, R., & Farzan, A. (2020). The relationship between hemoglobin levels at weaning and growth performance and antibody response in nursery pigs. Can Vet J, 61, 1170–1174.
Skrovanek, S. (2014). Zinc and gastrointestinal disease. World Journal of Gastrointestinal Pathophysiology, 5(4), 496. https://doi.org/10.4291/wjgp.v5.i4.496
Szuba-trznadel, A., Rz, A., Hikawczuk, T., & Fuchs, B. (2021). Effect of Zinc Source and Level on Growth Performance and Zinc Status of Weaned Piglets. Animals, 11(7), 1–10. 10.3390/ani11072030
Walk, C., Wilcock, P., & Magowan, E. (2015). Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal, 9(7), 1145–1152. https://doi.org/10.1017/S175173111500035X
Wei, X., Tsai, T., Knapp, J., Bottoms, K., Deng, F., Story, R., Maxwell, C., & Zhao, J. (2020). ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020146
Wensley, M., Tokach, M., Woodworth, J., Goodband, R., Gebhardt, J., DeRouchey, J. M., & McKilligan, D. (2021). Maintaining continuity of nutrient intake after weaning. II. Review of post-weaning strategies. Translational Animal Science, 5(1), 1–16. https://doi.org/10.1093/tas/txab022
Wijtten, P., Meulen, J. Van Der, & Verstegen, M. (2011). Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition, 105(7), 967–981. https://doi.org/10.1017/S0007114510005660
Xia, T., Lai, W., Han, M., Han, M., Ma, X., & Zhang, L. (2017). Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget, 8(39), 64878–64891. https://doi.org/10.18632/oncotarget.17612
Yamaji, S., Tennant, J., Tandy, S., Williams, M., Kaila, S., Srai, S., & Y, P. S. (2001). Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Letters, 507, 137–141.
Zhang, B., & Guo, Y. (2009). Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. British Journal of Nutrition, 102(5), 687–693. https://doi.org/10.1017/S0007114509289033